3126 Truck Engine (Military) Caterpillar


Basic Engine

Usage:

3126 1BW

Cylinder Block And Head

The cylinder block has seven main bearings. The main bearing caps are fastened to the cylinder block with two bolts per cap.

Removal of the oil pan allows access to the crankshaft, the main bearing caps, the piston cooling jets, and the oil pump.

The camshaft is accessible through the covers on the left side of the cylinder block. These side covers support the pushrod lifters. The camshaft is supported by bearings that are pressed into the cylinder block. There are seven camshaft bearings.

The cylinder head is separated from the cylinder block by a nonasbestos fiber gasket with a steel backing. Coolant flows out of the cylinder block through gasket openings and into the cylinder head. This gasket also seals the oil supply and drain passages between the cylinder block and the cylinder head.

The air inlet ports are on the top of the cylinder head, while the exhaust ports are located on the right side of the cylinder head. There is one inlet valve and one exhaust valve for each cylinder. Replaceable valve guides are pressed into the cylinder head. The hydraulically actuated electronically controlled unit injector is located between the two valves. Fuel is injected directly into the cylinders at very high pressure. A pushrod valve system controls the valves.

Piston, Rings And Connecting Rods

High output engines with high cylinder pressures require two-piece articulated pistons. Refer to the Parts Manual in order to obtain information about the type of pistons that are used in a specific engine.

The two-piece articulated piston consists of a forged steel crown that is connected to an aluminum skirt by the piston pin. The two-piece articulated piston has three rings:

  • a compression ring

  • an intermediate ring

  • an oil ring

All of the rings are located above the piston pin bore. The compression ring is a Keystone ring. Keystone rings have a tapered shape. The action of the ring in the piston groove that is tapered helps prevent seizure of the rings. Seizure of the rings is caused by deposits of carbon. The intermediate ring is rectangular with a sharp lower edge. The oil ring is a standard type of ring or a conventional type of ring. Oil returns to the crankcase through holes in the oil ring groove.

Oil from the piston cooling jets sprays the underside of the pistons. The spray lubricates the pistons and the spray cools the pistons. The spray also improves the piston's life and the spray also improves the ring's life.

The connecting rod has a taper on the pin bore end. This taper gives the connecting rod and the piston more strength. The additional strength is concentrated in the areas with the most load. Two bolts hold the connecting rod cap to the connecting rod. This design keeps the connecting rod width to a minimum, so that the connecting rod can be removed through the cylinder.

Crankshaft

The crankshaft changes the combustion forces in the cylinder into usable rotating torque which powers the equipment. A vibration damper is used at the front of the crankshaft to reduce torsional vibrations (twist on the crankshaft) that can cause damage to the engine.

The crankshaft drives a group of gears on the front of the engine. The gear group drives the following devices:

  • the oil pump

  • the camshaft

  • the hydraulic oil pump

  • the air compressor

  • the power steering pump

In addition, belt pulleys on the front of the crankshaft drive:

  • the radiator fan

  • the water pump

  • the alternator

  • the refrigerant compressor

Hydrodynamic seals are used at both ends of the crankshaft to control oil leakage. The hydrodynamic grooves in the seal lip move lubrication oil back into the crankcase as the crankshaft turns. The front seal is located in the front housing. The rear seal is installed in the flywheel housing.




Illustration 1g00293227

Schematic Of Oil Passages In Crankshaft

(1) Oil gallery. (2) Main bearings. (3) Rod bearings.

Pressure oil is supplied to all main bearings through drilled holes in the webs of the cylinder block. The oil then flows through drilled holes in the crankshaft in order to provide oil to the connecting rod bearings. The crankshaft is held in place by seven main bearings. A thrust bearing next to the rear main bearing controls the end play of the crankshaft.

Vibration Damper

The force from combustion in the cylinders will cause the crankshaft to twist. This is called torsional vibration. If the vibration is too great, the crankshaft will be damaged. The vibration damper limits the torsional vibrations to an acceptable amount in order to prevent damage to the crankshaft.

Rubber Vibration Damper (If Equipped)




Illustration 2g00293231

Rubber Vibration Damper

(1) Crankshaft. (2) Ring. (3 ) Rubber ring. (4) Hub. (5) Alignment marks.

The rubber vibration damper is installed on the front of crankshaft (1). The hub (4) and ring (2) are isolated by a rubber ring (3). The rubber vibration damper has alignment marks (5) on the hub and the ring. These marks give an indication of the condition of the rubber vibration damper.

Viscous Vibration Damper (If Equipped)




Illustration 3g00293230

Cross Section Of Viscous Vibration Damper

(1) Crankshaft. (2) Weight. (3) Case.

The viscous vibration damper is installed on the front of crankshaft (1). The viscous vibration damper has a weight (2) in a case (3). The space between the weight and the case is filled with a viscous fluid. The weight moves in the case in order to limit the torsional vibration.

Camshaft

The camshaft is located in the upper left side of the cylinder block. The camshaft is driven by gears at the front of the engine. Seven bearings support the camshaft. A thrust plate is mounted between the camshaft drive gear and a shoulder of the camshaft in order to control the end play of the camshaft.

The camshaft is driven by an idler gear which is driven by the crankshaft gear. The camshaft rotates in the same direction as the crankshaft. The crankshaft rotates in the counterclockwise direction when the engine is viewed from the flywheel end of the engine. There are timing marks on the crankshaft gear, the idler gear, and the camshaft gear in order to ensure the correct camshaft timing to the crankshaft for proper valve operation.

As the camshaft turns, each lobe moves a lifter assembly. There are two lifter assemblies for each cylinder. Each lifter assembly moves a pushrod. Each pushrod moves a valve, either an inlet or an exhaust valve. The camshaft must be in time with the crankshaft. The relation of the camshaft lobes to the crankshaft position causes the valves in each cylinder to operate at the correct time.

Caterpillar Information System:

Power Module Switchgear (Low Voltage and Medium Voltage) Battery Charger
3500 Generator Set Engines Ether Starting Aid
C0.5, C0.7, C1.1/3011C, C1.5/3013C, C1.6 and C2.2/3024C/3024CT Industrial Engines and Engines for Caterpillar Built Machines Cylinder Head
C0.5, C0.7, C1.1/3011C, C1.5/3013C, C1.6 and C2.2/3024C/3024CT Industrial Engines and Engines for Caterpillar Built Machines Engine Design
3054 and 3056 Marine Generator Set Engines Water Temperature Regulator - Remove and Install - 3054 Engine
3176C and 3196 Engines for Caterpillar Built Machines CID 0190 FMI 02 Loss of Engine Speed Signal
3500 Generator Set Engines Piston and Rings
3408E and 3412E Industrial Engines Electrical Ground Stud
3500 Generator Set Engines Fuel Filter Service Indicator
C-10 and C-12 Truck Engines Fuel System - Prime
3046 Engine for Caterpillar Built Machines Turbocharger - Inspect
Instructions for Installation of Oversize Hydraulic Cylinder Seals {7555, 7562} Instructions for Installation of Oversize Hydraulic Cylinder Seals {7555, 7562}
Engine Oil Cooler Engine Oil Cooler
3606, 3608, 3612 and 3616 Engines and C280-12, C280-16, C280-6 and C280-8 Marine Engines Standby Pump Panel General Information
Engine Oil Cooler Component Description
3500B Locomotive Engines Electronic Display Module - Optional
3126 Truck Engine Military Engine Oil Filter Base - Disassemble
C0.5, C0.7, C1.1/3011C, C1.5/3013C, C1.6 and C2.2/3024C/3024CT Industrial Engines and Engines for Caterpillar Built Machines Engine Design
3126 Truck Engine Military Engine Oil Filter Base - Assemble
3606, 3608, 3612 and 3616 Engines and C280-12, C280-16, C280-6 and C280-8 Marine Engines Standby Pump Panel Component Description
C0.5, C0.7, C1.1/3011C, C1.5/3013C, C1.6 and C2.2/3024C/3024CT Industrial Engines and Engines for Caterpillar Built Machines Engine Oil Pressure - Test
C0.5, C0.7, C1.1/3011C, C1.5/3013C, C1.6 and C2.2/3024C/3024CT Industrial Engines and Engines for Caterpillar Built Machines Cylinder Head - Inspect
385B Excavator Machine System Specifications Travel Motor
Engine Oil Cooler Dirty Channel Plate
Back to top
The names Caterpillar, John Deere, JD, JCB, Hyundai or any other original equipment manufacturers are registered trademarks of the respective original equipment manufacturers. All names, descriptions, numbers and symbols are used for reference purposes only.
CH-Part.com is in no way associated with any of the manufacturers we have listed. All manufacturer's names and descriptions are for reference only.