854K Wheel Dozer Caterpillar


Piston Pump (Implement)

Usage:

854K KK3


Illustration 1g06131986
(1) Pressure sensor
(2) Pressure tap
(3) Implement pump
(4) Bias spring
(5) Actuator
(6) Super charger impeller
(7) Implement ECM
(8) Control spool
(9) Coil assembly
(A) Implement supply oil
(B) Return oil
(C) Pilot supply oil
(D) Suction oil


Illustration 2g06234540
Pump compartment
(10) Implement pump (right)
(11) Implement pump (center)

Note: During normal operation, the two implement pumps (10) and (11) operates in the manner that is described below.

The implement pumps are variable displacement axial piston pumps that supply hydraulic oil to the main control valves. Each pump contains a swashplate that is driven by a single actuator (5). The small end of the actuator is connected to system pressure (A) from the discharge of the implement pump (3). The small end of the actuator also has bias spring (4) that assists in up-stroking the pump during low discharge pressure. The large end of the actuator is connected to modulated pilot pressure that is controlled by control spool (8). The pilot pressure that is used to control the large end of the actuator is externally supplied. The pump displacement is controlled by a proportional current from the implement electronic control module (ECM) (7) to coil assembly (9).

When higher pump displacement is desired, the current that is supplied to coil assembly (9) is increased. This shifts control spool (8) upward. This action drains a portion of the pilot pressure that is acting against the large end of actuator (5). The oil drains to the case drain of the pump. Pump discharge pressure (A) and the force of bias spring (4) are now greater than the modulated pilot pressure and spring force on the large end of the actuator. Actuator (5) shifts downward. This action increases the angle of the swashplate.

When lower pump displacement is desired, the current that is supplied to coil assembly (9) is decreased. This shifts control spool (8) downward. This action increases the pilot pressure that is acting against the large end of actuator (5) by closing the path to the case drain of the pump. Pump discharge pressure (A) and the force of bias spring (4) are now less than the modulated pilot pressure and spring force on the large end of the actuator. Actuator (5) shifts upward. This action decreases the angle of the swashplate.

When the implement system is in standby operation, the implement pumps are controlled in order to provide the necessary flow that lubricates the rotating group. This lubrication also cools the rotating group. Adequate response from the pump is maintained and parasitic load on the engine is minimized. Standby control is active when no command is received from the tilt control lever or the lift control lever. During standby, a proportional current is sent to coil assembly (9). This current shifts control spool (8). This action modulates the pilot pressure that is applied to the large end of actuator (5). Pump discharge pressure (A) is read by implement ECM (7) by using pressure sensor (1). Implement ECM (7) adjusts the proportional current in order to maintain a pump discharge pressure of 2500 kPa (360 psi).

When the implement system is in normal operating mode, the displacement of the implement pump is controlled in order to provide only the flow that is required in order to satisfy the requests that are received from the lift control lever and the tilt control lever. Implement ECM (7) reads the requests by using the tilt lever position sensor and the lift lever position sensor. Implement ECM (7) adjusts the proportional current that is sent to coil assembly (9) in order to provide the appropriate pump flow.

During engine start-up, implement ECM (7) commands maximum displacement of the pump in order to purge air from the hydraulic system. Also, the float valves are opened in order to reduce parasitic loads on the engine. Once the engine is running, the implement system enters standby mode.

Suction oil (D) is charged by super charger impeller (6). Also, the pump features internal flushing of the case. Charged oil flows from the inlet to the case. Due to the flushing feature, flow of case drain oil from the pump depends on oil temperature, pump speed, and the pressure differential between inlet pressure and case pressure. An increase in the pump speed, the oil temperature, or the pressure differential will increase the flow of case drain oil.

Caterpillar Information System:

MD6250 Rotary Drill Systems Travel Parking Brake
3512E Tier 4 Final Engines for Land Electric Drilling Crankcase Breather - Valve Cover Integrated Breathers with Closed Crankcase Ventilation
330 GC and 330 Excavator Maintenance Interval Schedule
854K Wheel Dozer Pilot Hydraulic System
320GC, 320 and 323 Excavators Machine Systems Pump Drive Coupling - Remove and Install
MD6250 and MD6310 Rotary Drills ECM Location Code - Test
C32 Marine Engines Water Temperature Regulator - Remove and Install
MD6310 Rotary Drill Lifting and Tying Down the Machine
525D, 535D, 545D and 555D Wheel Skidders Machine Systems Piston Motor (Winch) - Remove and Install
320GC, 320 and 323 Excavators Machine Systems Cab - Remove and Install
Procedure to Install the Bluetooth Receiver Kit on Certain 320 GC, 330 GC, 336 GC and 345 GC Excavators {7008} Procedure to Install the Bluetooth Receiver Kit on Certain 320 GC, 330 GC, 336 GC and 345 GC Excavators {7008}
A Lifting Eye Quality Issue Exists for Certain 3500 Engines {1122} A Lifting Eye Quality Issue Exists for Certain 3500 Engines {1122}
854K Wheel Dozer Oil Filter (Hydraulic)
C32 Marine Engines Expansion Tank - Remove and Install
330, 330GC Hydraulic Excavator Engine Supplement Water Temperature Regulator - Remove and Install
320GC Excavator Engine Supplement Refrigerant Compressor - Remove and Install
New Input Transfer Gear and Lubrication Lines Are Now Available for Certain 994K Wheel Loaders {1164, 3159} New Input Transfer Gear and Lubrication Lines Are Now Available for Certain 994K Wheel Loaders {1164, 3159}
854K Wheel Dozer General Information (Power Train System)
854K Wheel Dozer Steering Control Valve
320, 323 Excavator Engine Supplement Valve Mechanism Cover - Remove and Install
C32 Marine Engines Aftercooler - Install
631K OEM Wheel Tractor Systems Air and Temperature Control
C32 Marine Engines Coolant Level Sensor - Remove and Install
C32 Marine Engines Coolant Level Sensor - Remove and Install - (SCAC)
Back to top
The names Caterpillar, John Deere, JD, JCB, Hyundai or any other original equipment manufacturers are registered trademarks of the respective original equipment manufacturers. All names, descriptions, numbers and symbols are used for reference purposes only.
CH-Part.com is in no way associated with any of the manufacturers we have listed. All manufacturer's names and descriptions are for reference only.