G3516 Power Module Caterpillar


Sensors and Electrical Components

Usage:

PMG3516 KAD
Note: This section contains some general information about the engine electronic system and sensors. For more information, refer to Systems Operation/Testing and Adjusting.

Electronic System

The Cat Electronic System is a complete electronic control system for gas engines. The following benefits are the most significant advantages of the electronic system:

  • Air/Fuel ratio control

  • Extensive system diagnostics

  • Elimination of parts that are prone to mechanical wear

  • Precise control of engine operation

  • Protection from detonation

  • Timing control of individual cylinders




Illustration 1g00527903

Junction box

Most of the functions of the electronic system are provided by the Electronic Control Module (ECM). The ECM is a sealed unit. The ECM is located inside a junction box.

Five primary functions are supported by the ECM:

  • Governing of the engine rpm

  • Control of ignition

  • Control of the air/fuel ratio

  • Start/stop control

  • Monitoring of engine operation

Governing of the Engine RPM

The ECM receives a signal from the speed/timing sensor. The ECM maintains the desired engine rpm through electrical control of the electrohydraulic actuator. The actuator regulates the throttle plate.

The actual throttle position can be observed on a mechanical indicator that is on the housing of the actuator.

Control of Ignition

Each cylinder has an ignition transformer that is located under the valve cover. To initiate combustion in each cylinder, the ECM sends a pulse to the primary coil of the ignition transformer. The transformer increases the voltage which creates a spark across the spark plug electrode.

The transformers are grounded through the valve cover. Use caution when a valve cover is removed.

Always disconnect the ignition harness from the transformer when a valve cover is removed.

An ignition harness connects each transformer to the ECM. The harness is routed inside the engine.

Control of Air and Fuel

The ECM determines the desired volume for the flow rates of the air and fuel. The determination is based on the desired engine speed, the actual engine speed, and the calculated load. Next, the ECM sends information on the desired flow of air and fuel to the fuel metering valve via a PWM signal. The ECM monitors the content of the resulting exhaust gas. The ECM fine tunes the signal to the fuel metering valve in order to achieve the desired exhaust oxygen. The process is repeated continuously during engine operation.

Start/Stop Control

The ECM contains the logic and the outputs for controlling the starting and stopping of the engine. The logic for starting and stopping can be programmed by the customer. The ECM supplies positive "+" battery voltage to the starting motor relay and the gas shutoff valve.

The engine uses an energize-to-run system. The gas shutoff valve must remain energized in order to supply fuel to the engine. If power is removed from the gas shutoff valve, the fuel is shut off.

Monitoring Engine Operation

Sensors are used in order to monitor engine operation. Wiring harnesses connect the sensors to the ECM. The ECM uses information from the sensors in order to monitor the engine. The ECM also uses information from the sensors in order to control the engine. The information is also used to generate event codes, and diagnostic codes. The codes can be read with Cat Electronic Technician (ET).

Event - An event is a result of abnormal engine operation. If abnormal engine operation is detected, the ECM generates an event code. The ECM can generate an alarm or a shutdown for abnormal engine operation. These conditions are some examples of events: high inlet air temperature, low oil pressure and engine overspeed.

Diagnostic - A diagnostic code is a result of a problem with the operating system or with the monitoring system. The ECM uses sensors and internal circuitry to monitor the system components. If a problem develops in a component or a wiring harness, the control system will sense the problem. The control system will notify the operator by creating a diagnostic code. Some examples of conditions that activate diagnostics are a short in a circuit for a sensor, an open circuit, or a noisy signal.

Note: For detailed information on event codes and diagnostic codes, refer to Troubleshooting.

Sensors

Sensors provide information to the ECM. The information enables the ECM to control the engine as efficiently as possible over a wide range of operating conditions. The information is used for monitoring engine operation.

Illustrations 2, 3, and 4 show the locations of the sensors.




Illustration 2g00913032

(1) Coolant pressure switch (pump inlet pressure)

(2) Detonation sensor

(3) Electrohydraulic actuator pressure switch

(4) Inlet air temperature sensor

(5) Engine coolant temperature sensor




Illustration 3g00913033

(6) Pressure sensor for unfiltered oil

(7) Pressure sensor for filtered oil

(8) Engine coolant pressure sensor (outlet)

(9) Oxygen sensor

(10) Manifold air pressure sensor

(11) Engine oil temperature sensor

(12) Oxygen buffer

(13) Speed/timing sensor

The functions of the sensors are described below.

Coolant pressure switch (1) - This pressure switch measures the pump inlet pressure at the outlet of the oil cooler.

Detonation sensors (2) - The detonation sensors monitor the engine for detonation in each cylinder. To eliminate detonation, the ECM retards the timing of the cylinder. If excessive detonation continues, the ECM will shut down the engine.

Electrohydraulic actuator pressure switch (3) - The electrohydraulic actuator pressure switch monitors the pressure of the oil supply. Insufficient oil pressure will activate an engine shutdown.

Inlet air temperature sensor (4) - A sensor for monitoring the air inlet temperature is located in the elbow before the number one cylinder head. Excessive inlet air temperature can activate an alarm, a derating, or a shutdown.

Engine coolant temperature sensor (5) - The temperature sensor is located in the water temperature regulator housing. To monitor the coolant temperature, the element must be in contact with the coolant. If overheating occurs due to low coolant level, the sensor will not function properly. A high coolant temperature will activate an alarm, a derating, or a shutdown. A low coolant temperature will only activate an alarm. The setpoints for the activation can be programmed with the Cat ET. The engine can be restarted after a shutdown due to high engine coolant temperature. However, another shutdown will occur after 1 minute if the temperature remains high.

Oil pressure sensors (6) and (7) - The engine oil pressure is measured before the oil filters and after the oil filters. An alarm or a shutdown can be activated by any of the following occurrences: low filtered oil pressure, low oil filter differential pressure and high oil filter differential pressure.

Engine coolant pressure sensor (8) - A pressure switch is located at the outlet for the engine jacket water. If the outlet pressure is too low, the ECM will activate a shutdown.

Manifold air pressure sensor (10) - The manifold air pressure sensor is connected to the air inlet manifold. The sensor monitors the absolute manifold air pressure. The information is used by the ECM to determine the engine load.

Engine oil temperature sensor (11) - An oil temperature sensor monitors the engine oil temperature. A high oil temperature will activate an alarm or a shutdown. The ECM compares the oil temperature to the engine coolant temperature. A high difference between the two temperatures will activate an alarm or a shutdown.

Speed/timing sensor (13) - The engine speed/timing sensor is located on the rear end of the left camshaft. The engine speed/timing sensor provides accurate information about the position of the crankshaft and the engine rpm to the ECM. The ECM uses the position of the crankshaft in order to determine ignition timing.




Illustration 4g00789480

(14) Thermocouple for the temperature of the cylinder exhaust port

(15) Thermocouple for the temperature of the exhaust inlet to the turbocharger

(16) Thermocouple for the temperature of the exhaust outlet from the turbocharger turbine

Cylinder Exhaust Temperature (14) - Thermocouples measure the exhaust temperatures from the exhaust port of each cylinder. An alarm or a shutdown is activated if the exhaust temperature from any cylinder is too high. The alarm or shutdown also activates if the temperature deviates excessively from the average temperature of all of the cylinders.

Exhaust Inlet Temperature to the Turbocharger (15) - A thermocouple is mounted at the inlet for the exhaust gas of each turbocharger turbine. An alarm or a shutdown is activated if the temperature of the exhaust to the turbine is too high or too low.

Exhaust Outlet Temperature from the Turbocharger Turbine (16) - A thermocouple is mounted at the outlet for the exhaust gas of each turbocharger turbine. An alarm or a shutdown is activated if the temperature of the exhaust from either turbine is too high or too low.

Integrated Temperature Sensing Module (ITSM)

The ITSM monitors thermocouples that are located at the exhaust port of each cylinder. Thermocouples are also mounted at the inlets and outlets to the turbochargers. The temperatures are broadcast over data links for use with other modules.

The ITSM calculates the average temperature for each bank. Event codes are generated if the following conditions occur:

  • The temperature is higher than the limit that is programmed.

  • The temperature of a cylinder deviates significantly from the average temperature for all of the cylinders.

Caterpillar Information System:

725C2 Articulated Truck Engine Valve Lash - Check
G3516 Power Module Product Description
C15 and C18 Engines Engine Oil and Filter - Change
CX28 Transmission For Combat and Tactical Vehicles Transmission ; Transfer Case Electronic Control System Transmission, SPN 441 - FMI 3
C13, C15, and C18 Tier 4 Interim Engines Variable Valve Actuator - Test
CX28 Transmission For Combat and Tactical Vehicles Transmission ; Transfer Case Electronic Control System Transmission, SPN 746 - FMI 3
CX28 Transmission For Combat and Tactical Vehicles Transmission ; Transfer Case Electronic Control System Transmission, SPN 4045 - FMI 5
CX28 Transmission For Combat and Tactical Vehicles Transmission ; Transfer Case Electronic Control System Transmission, SPN 4046 - FMI 3
CX28 Transmission For Combat and Tactical Vehicles Transmission ; Transfer Case Electronic Control System Electrical Connector - Inspect
Selecting Correct Part Numbers For Sensors and Adapter Harnesses for Certain Machines and Engines{1408, 1439} Selecting Correct Part Numbers For Sensors and Adapter Harnesses for Certain Machines and Engines{1408, 1439}
CX28 Transmission For Combat and Tactical Vehicles Transmission ; Transfer Case Electronic Control System Electronic Control Unit - Configure
C13 Engines for Caterpillar Built Machines Exhaust Gas Valve (NRS)
G3516 Power Module Alarms and Shutoffs
G3516 Power Module Starting the Engine
G3516 Power Module Emergency Stopping
G3516 Power Module Parallel Operation
G3516 Power Module Generator Operation
G3516 Power Module Voltage Regulators
2010/11/01 Improved Wiring Configuration for Circuit Breakers On Certain Cat Generator Sets {1408, 1420, 4459, 4461}
C9.3 Tier 4 Final Engines Exhaust Diffuser Adapter
G3520E Generator Set Engines Engine Shutdown Occurs Intermittently
2010/10/22 New Thermostats Are Used for Jacket Water Heaters on Some 3500 and C32 Engines for Electric Power Generation {1383}
G3516 Power Module Makeup Oil Tank - Fill
PMG3516 Power Module Methane Gas Detector
Back to top
The names Caterpillar, John Deere, JD, JCB, Hyundai or any other original equipment manufacturers are registered trademarks of the respective original equipment manufacturers. All names, descriptions, numbers and symbols are used for reference purposes only.
CH-Part.com is in no way associated with any of the manufacturers we have listed. All manufacturer's names and descriptions are for reference only.