Planetary Final Drives for Wheel Loaders, Wheel Tractors, Compactors, Underground Articulated Trucks {4011, 4050, 4051} Caterpillar


Planetary Final Drives for Wheel Loaders, Wheel Tractors, Compactors, Underground Articulated Trucks {4011, 4050, 4051}

Usage:

980C 13B
Compact Wheel Loader
All
Earthmoving Compactor
All
Integrated Toolcarrier
All
Landfill Compactor
All
Load Haul Dump
All
Soil Compactor
All
Underground Articulated Truck
All
Wheel Dozer
All
Wheel Loader
All

Introduction

Table 1
Revision  Summary of Changes in SEBF8093 
13  Updated boilerplate information, added clarity to Illustrations, tables, verbiage, and document layout. Corrected several Tolerances throughout this document. Added information for 20 part numbers. 
12  Added 22 part numbers. 
11  Added 3 part numbers. 
10  Added 10 part numbers. 

© 2018 Caterpillar All Rights Reserved. This guideline is for the use of Cat dealers only. Unauthorized use of this document or the proprietary processes therein without permission may be violation of intellectual property law.

Information contained in this document is considered Caterpillar: Confidential Yellow.

This Reuse and Salvage Guideline contains the necessary information to allow a dealer to establish a parts reusability program. Reuse and salvage information enables Caterpillar dealers and customers to benefit from cost reductions. Every effort has been made to provide the most current information that is known to Caterpillar. Continuing improvement and advancement of product design might have caused changes to your product which are not included in this publication. This Reuse and Salvage Guideline must be used with the latest technical information that is available from Caterpillar.

For technical questions when using this document, work with your Dealer Technical Communicator (TC).

To report suspected errors, inaccuracies, or suggestions regarding the document, submit a form for feedback in the Service Information System (SIS Web) interface.

Canceled Part Numbers and Replaced Part Numbers

This document may include canceled part numbers and replaced part numbers. Use the Numerical Part Record (NPR) on the Service Information System Website (SIS Web) for information about canceled part numbers and replaced part numbers. NPR will provide the current part numbers for replaced parts.

Important Safety Information



Illustration 1g02139237

Work safely. Most accidents that involve product operation, maintenance, and repair are caused by failure to observe basic safety rules or precautions. An accident can often be avoided by recognizing potentially hazardous situations before an accident occurs. A person must be alert to potential hazards. This person should also have the necessary training, skills, and tools to perform these functions properly. Safety precautions and warnings are provided in this instruction and on the product. If these hazard warnings are not heeded, bodily injury or death could occur to you or to other persons. Caterpillar cannot anticipate every possible circumstance that might involve a potential hazard. Therefore, the warnings in this publication and the warnings that are on the product are not all inclusive. If a tool, a procedure, a work method, or operating technique that is not recommended by Caterpillar is used, ensure that it is safe for you and for other people to use. Ensure that the product will not be damaged or the product will not be made unsafe by the operation, lubrication, maintenance, or the repair procedures that are used.

------ WARNING! ------

Improper operation, lubrication, maintenance or repair of this product can be dangerous and could result in injury or death.

Do not operate or perform any lubrication, maintenance or repair on this product, until you have read and understood the operation, lubrication, maintenance and repair information.


Safety precautions and warnings are provided in this manual and on the product. If these hazard warnings are not heeded, bodily injury or death could occur to you or to other persons.

The hazards are identified by the safety alert symbol which is followed by a signal word such as danger, warning, or caution. Refer to Illustration 2 for an example of a “WARNING” Safety Alert Symbol.



Illustration 2g00008666

This safety alert symbol means:

Pay attention!

Become alert!

Your safety is involved.

The message that appears under the safety alert symbol explains the hazard.

Operations that may cause product damage are identified by "NOTICE" labels on the product and in this publication.

Caterpillar cannot anticipate every possible circumstance that might involve a potential hazard. The safety information in this document and the safety information on the machine are not all inclusive. Determine that the tools, procedures, work methods, and operating techniques are safe. Determine that the operation, lubrication, maintenance, and repair procedures will not damage the machine. Also, determine that the operation, lubrication, maintenance, and repair procedures will not make the machine unsafe.

The information, the specifications, and the illustrations that exist in this guideline are based on information which was available at the time of publication. The specifications, torques, pressures, measurements, adjustments, illustrations, and other items can change at any time. These changes can affect the service that is given to the product. Obtain the complete, most current information before you start any job. Caterpillar dealers can supply the most current information.

Summary

This guideline provides information, which aids in the determination of the reusability of the planetary carrier in the final drive.

This guideline provides the procedures necessary to determine the reusability of planetary final drives. Life will vary depending on application, load, lubrication, and environment.

This guideline contains the latest standards of engineering, which will help minimize owning and operating costs. A part is expected to reach the next Planned Component Rebuild (PCR) if the part meets the specifications within this guideline and the part is intended for a similar application. Use this guideline to determine whether a part should be reused. Do not install a part that is not reusable. During reconditioning, correct any condition that might have caused the original failure.

The dimensions and tolerances provided are to return a part / component to specification. The dimensional information alone is not solely used to condemn a part from reuse. Follow visual inspections and the "Crack Detection Methods" section for further guidance.

References

Table 2
References 
Media Number  Publication Type & Title 
Channel1  "Gear Tooth Inspection" 
https://channel1.mediaspace.kaltura.com/media/Gear+Tooth+Inspection/1_5ujdi5zp
"Why Reuse and Salvage Parts"
https://channel1.mediaspace.kaltura.com/media/Why+Reuse+and+Salvage+Parts/0_ae9rhu2z
PERJ1017  Special Publication
"Dealer Service Tools Catalog" 
SEBF8163  Reuse and Salvage Guidelines
"Procedures to Salvage Thrust Faces on Planetary Carriers" 
SEBF8187  Reuse and Salvage Guidelines
"Standardized Parts Marking Procedures" 
SEBF8193  Reuse and Salvage Guidelines
"Reusability of Drive Train Gears" 
SEBF8728  Reuse and Salvage Guidelines
"Specifications for Inspection of Driveline Fasteners" 
SEBF9236  Reuse and Salvage Guidelines
"Fundamentals of High Velocity Oxygen Fuel (HVOF) Spray for reconditioning Components" (1) 
SEBF9238  Reuse and Salvage Guidelines
"Fundamentals of Arc Spray for reconditioning Components" (1) 
SEBF9240  Reuse and Salvage Guidelines
"Fundamentals of Flame Spray for Reconditioning Components" (1) 
(1) Only Cat dealers may utilize applications for Thermal Spray. The processes must be carried out within the facilities of the dealership. The dealership must maintain a clean environment and always use the correct equipment for all processes in each Thermal Spray Application.

Service Advisories, Service Letters, and Technical Service Bulletins

The most recent Service Advisories, Service Letters, and Technical Service Bulletins that are related to this component should be reviewed before beginning work. Often Service Advisories, Service Letters, and Technical Service Bulletins contain upgrades in repair procedures, parts, and safety information which pertain to the components being repaired.

Tooling and Equipment

Note: The Tooling and Equipment in Table 3 is not an all inclusive list of Tooling required to perform every task within this document. Tooling needs may vary for scope of work to be performed for each specific rebuild.

Table 3
Required Tooling and Equipment 
Part Number  Description  Designation 
(1)  Personal Protective Equipment (PPE)  Personal Protection 
(2)  Clevis/ Shackle  Component
Repositioning
and Movement 
(2)  Lifting Eye Assemblies  Component
Repositioning
and Movement 
(2)  Tool (Cribbing)  Component
Repositioning
and Movement 
—  Suitable Lifting Device  Component
Repositioning
and Movement 
1U-7262  Telescoping Magnet  General Tooling 
1U-9367  Automatic Tape Measure (1-inch X 26- ft)
25.4- mm x 8- m 
Measurement
Checks 
4S-9405  Caliper
304.8 mm (12.00 inch) 
Profile
Measurement 
5P-3920  Tool
Rule
304.8 mm (12.00 inch) 
Measurement
Checks 
8H-8581  Feeler Gauge
0.038 - 0.635 mm
(0.0015 - 0.0250 inch) 
Thickness
Measurement
Checks 
385-9422  Tools (Micrometer)
Internal
(2 - 24 inch) 
Internal
Measurement
Checks 
386-3364  Tool (Ruler)
1,000.0 mm (39.37 inch) 
Measurement
Checks 
431-4150  Micrometers
External
0 - 25 mm (0 - 1 inch) 
External
Measurement
Checks 
473-8688
or
473-8689 
Instrument Group
Micrometer, Inside
2.00 - 12.00 inch 
Internal
Measurement
Checks 
Instrument Group
Micrometer, Inside
50 - 300 mm
473-8690  Instrument Group
Micrometer, Outside
0.00 - 4.00 inch 
External
Measurement
Checks 
473-8691  Instrument Group
Micrometer, Outside
2.00 - 6.00 inch 
External
Measurement
Checks 
473-8692  Instrument Group
Micrometer, Outside - Digital
152.4 - 304.8 mm (6.00 - 12.00 inch) 
External
Measurement
Checks 
474-3709
or
474-3710 
Instrument Group
Micrometer, Inside
(8.00 - 32.00 inch) 
Internal
Measurement
Checks 
Instrument Group
Micrometer, Inside
200 - 800 mm
385-8484  Tool (Level)
305 mm (12 inch) 
Level 

and /or
— 
GO/NO-GO Thread Gauge Set, Metric  Threaded Hole
Inspection 
GO/NO-GO Thread Gauge Set, SAE
(2)  Plastic Plug Assortment  Threaded Hole
Protection 
(2)  Tap and Die Set  Threaded Hole
/ Restore 
154-9316  File Metric  Threaded Shaft
/ Restore 
1U-5516  Disc (Coarse)  Surface
Preparation
/ De-burring 
1U-5518  Threaded Shaft  Surface
Preparation
/ De-burring 
1U-5519  Holder (Disc Pad)  Surface
Preparation
/ De-burring 
1U-6791  Grinding Wheel  Surface
Preparation
/ De-burring 
1U-6794  Grinding Wheel  Surface
Preparation
/ De-burring 
1U-6832  Abrasive Disc  Surface
Preparation
/ De-burring 
1U-6846  Abrasive Disc  Surface
Preparation
/ De-burring 
4C-3770  Grinding Wheel  Surface
Preparation
/ De-burring 
4C-8514  Wheel
(2 x 1 inch)
(60 Grit) 
Surface
Preparation
/ De-burring 
4C-8515  Grinding Wheel (F-Grade)
(2 x 1 inch)
(120 Grit) 
Surface
Preparation
/ De-burring 
222-3076  Die Grinder
(Right Angle) 
Surface
Preparation
/ De-burring 
254-5319  Brush
76.2 x 50.8 mm
(3.00 x 2.00 inch) 
Surface
Preparation
/ De-burring 
9U-7377 (3)  Metal Marking Pen  Parts Marking 
6V-2010  Polishing Stone  Gear Polishing 
1U-9918  Brush  General Cleaning 
1U-5512  Abrasive Material (Roll)  General Cleaning 
8T-7765  Surface Reconditioning Pad (180 Grit)  General Cleaning 
162-5791  Towel  General Cleaning 
—  Large Rubber Band  MOP Small Gear/
Spline Wear
Inspection 
549-3500  Tool Group
Gage Pins 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 2.3825 mm
(0.09380 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 3.1750 mm
(0.12500 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 3.6576 mm
(0.14400 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 3.9675 mm
(0.15620 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
549-3505 (5)  Pin Set
4.0 mm 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 4.0640 mm
(0.16000 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 4.7625 mm
(0.18750 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 4.7630 mm
(0.18752 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 4.8768 mm
(0.19200 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 4.877 mm
(0.19201 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
549-3506 (5)  Pin Set
5.0 mm 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
5.4864 mm
(0.21600 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
549-3508 (5)  Pin Set
6.0 mm 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 6.0960 mm
(0.24000 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 6.3500 mm
(0.25000 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 7.3152 mm
(0.28800 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 7.9375 mm
(0.31250 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 8.7782 mm
(0.34560 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 9.5250 mm
(0.37500 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 9.7536 mm
(0.38400 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
549-3512 (5)  Pin Set
10.0 mm 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 10.9728 mm
(0.43200 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 11.1125 mm
(0.43750 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
549-3513 (5)  Pin Set
12.0 mm 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 12.7000 mm
(0.50000 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 14.0000 mm
(0.55118 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 14.2875 mm
(0.56250 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Precision Gage Pins (4)
Ø 15.9995 mm
(0.62990 inch)
x 50.8 mm (2.00 inch) 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
549-3514 (5)  Pin Set
16.0 mm 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
549-3515 (5)  Pin Set
20.0 mm 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
549-3516 (5)  Pin Set
25.0 mm 
Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
549-3520 (5)  Tool (Magnet) (6)  Measurement
Between / MOP
Gear/ Spline
Wear Inspection 
—  Magnets  Measurement
Between / MOP
Large Gear/ Spline
Wear Inspection 
5P-7414  Seal Pick
Kit 
Gear/ Shaft
Step Inspection 
9A-1593  Comparison Gauge (Surface Texture)  Surface Texture
Tester 
453-5376  Tool
Specimen 
Surface Texture
Tester 
448-3698  Indicator
(Profilometer) 
Surface Texture
Tester 
8S-2257  Magnifying Glass  Visual Surface
Inspection (VT) 
9U-6182  Mirror (Telescoping)  Visual Surface
Inspection (VT) 
9U-7231  Flashing Lights Conversion Kit  Visual Surface
Inspection (VT) 
4C-9442  Light  Visual Surface
Inspection (VT) 
(2)  Bright Incandescent Light  Visual Surface
Inspection (VT) 
—  Reflective Surface for Inspection  Visual Surface
Inspection (VT) 
262-8390  Microscope (40-Power)
Pocket 
Crack/
Measurement
Inspection 
288-4209  Paper Towel  Liquid Penetrant
Testing (PT) 
1U-9915  Brush
Curved Handle Wire 
General Cleaning/
Liquid Penetrant
Testing (PT) 
—  Developer  Liquid Penetrant
Testing (PT) 
—  Penetrating Oil  Liquid Penetrant
Testing (PT) 
—  Solvent Cleaner  General Cleaning/
Liquid Penetrant
Testing (PT) 
263-7184  Crack Detection Kit (Magnetic Particle)  Dry Magnetic
Particle Testing
(MPT) 
—  Paint Pen  Dry Magnetic
Particle Testing
(MPT) 
459-0184  Lamp Group
Ultraviolet 
Wet Magnetic
Particle Testing
(MPT) 
505-8671  Fluid
Ultrasonic Wear Indicator 
Ultrasonic
Testing (UT) 
415-4055  Tool Group(Ultrasonic)  Ultrasonic
Testing (UT) 
(1) Refer to PERJ1017Special Publication, "Dealer Service Tools Catalog" for Personal Protective Equipment (PPE) part numbers suitable by geographic location and local safety standards.
(2) Refer to Special Publication, PERJ1017, "Dealer Service Tools Catalog" for suitable tooling.
(3) Available in the United States only.
(4) Minimum of two are required.
(5) Part of Tool Group 549-3500.
(6) For use with precision gage pins.

Prepare the Area for Inspection

------ WARNING! ------

Personal injury can result when using cleaner solvents.

To help prevent personal injury, follow the instructions and warnings on the cleaner solvent container before using.


------ WARNING! ------

Personal injury can result from air pressure.

Personal injury can result without following proper procedure. When using pressure air, wear a protective face shield and protective clothing.

Maximum air pressure at the nozzle must be less than 205 kPa (30 psi) for cleaning purposes.




Illustration 3g03794147
Typical burr removal Tooling.
(A) Die Grinder, Right Angle
(B) Wheel Grinder, Group
(C) Conditioning Discs, Disc pad Holder, and Threaded Shaft
(D) Flapper Wheel

  • Before you inspect a part, clean the part thoroughly to ensure that all components are free from rust, oil, burrs, and debris prior to inspection. A surface irregularity can hide the indication of an unacceptable defect.

  • Use a proper lifting device to provide safety to the operator. Also, use a proper lifting device to prevent damage to the part when you lift the part.

  • During cleaning, do not damage machined surfaces.

  • Do not use pressurized air to dry internal components. Compressed air has moisture and contaminants that can cause premature failure of internal components.

  • Inspect all fasteners that have been removed, refer to SEBF8728, "Specifications for Inspection of Driveline Fasteners" for more information.

  • Put hydraulic oil on all machined surfaces to prevent rust or corrosion if inspection is not done immediately after cleaning. Carefully store the parts in a clean container.

  • Inspect all flange mating surfaces for fretting. Ensure that flange mating surfaces are true and free from raised material resulting from rust, nicks, and dents.

  • Use appropriate thread taps to chase all threaded holes.

Standardized Parts Marking

Reference: , SEBF8187Reuse and Salvage Guidelines, "Standardized Parts Marking Procedures".

The code is a Cat standard and is used to record the history of a component. The code will identify the number of rebuilds and hours at the time of each rebuild. This information is important and should be considered for any decision to reuse a component.

Ensure that the mark is not covered by a mating part. Use a metal marking pen to mark the code onto the component.


NOTICE

Do not use numbering stamp punches to mark internal components. The impact from striking the stamp will cause an abnormal stress riser. The added stress riser may cause premature part failure.




Illustration 4g06124077
DO NOT use numbering stamp punches to mark internal components.

The procedure for marking components is a Cat standard. This code is helpful when the machine is sold into a different territory after the first rebuild. During an overhaul, the previous code of a part should never be removed.

Example 1



Illustration 5g03856853
Typical Example

Illustration 5 shows code (1-15). The first number (1) indicates that the gear had been repaired once. The second number (15) indicates that there were 15,000 hours on the gear at the time of repair.

Example 2



Illustration 6g03748362
Example

This coding can be used by all dealers and will help with identification at time of repair. Identification can be especially helpful if units that have been rebuilt are sold into different territories. As rebuilds are completed, the previous markings should be left on the component.

Illustration 6 shows code (1-12) and code (2-10). Code (2-10) represents the information from the second rebuild. The first number (2) indicates that the gear had been rebuilt twice. The second number (10) indicates that 10,000 hours accumulated on the gear between the first and second rebuild.

Note: Add the first and second rebuild hours to obtain the total number of hours for the gear in Illustration 6. In this example, the gear has a total of 22,000 hours.

Example 3



Illustration 7g03519882
Typical Example

(A) Mark the planet pin on either end using a metal marking pen.

Final Drive Wheel Group Component Locations



Illustration 8g06320845
Typical Example of Final Drive Wheel Group - Without Brakes
(1) Spindle
(2) Wheel
(3) Reaction Hub
(4) Planetary Carrier
(5) Planetary Gear
(6) Planetary Shaft


Illustration 9g06321222
Typical Example of Final Drive Wheel Group - With Brakes
(1) Spindle
(2) Wheel
(3) Hub
(4) Planetary Carrier
(5) Planetary Gear
(6) Planetary Shaft
(7) Service Brake Group

Measurement Techniques


NOTICE

Precise measurements shall be made when the component and measurement equipment are at 20° C (68° F). Measurements shall be made after both the component and measurement equipment have had sufficient time to soak at 20° C (68° F). Ensuring that both the surface and core of the material is at the same temperature will increase the accuracy of the measurement taken.


Measurement Tooling Calibration

Outside Micrometers



Illustration 10g06208395
Typical example of calibrating outside micrometer (A).
(A) Outside Micrometer

Measurement Tooling include precision inside and outside diameter micrometers capable of measuring four decimal places in inches or three decimal places in millimeters. Measurement Tooling should be calibrated using gauge blocks certified to a national standard such as the National Institute of Standards and Technology (NIST).

Inside Micrometer



Illustration 11g06208411
Typical example of calibrating inside micrometer (B).
(B) Inside Micrometer

Bore Diameters



Illustration 12g06318221
Typical example of measuring bore Inside Dimension (ID) of a wheel.
(A) Indicates the diameter of the bore.
(B) Indicates the overall thickness of the material.

Note: Measurements taken on the edge of a bore may not give an accurate measurement.

Take measurements at locations (A1), (A2), and (A3).

Then take measurements at locations (A4), (A5), and (A6).

To ensure adequate life of the components, this document contains precise tolerances for measurements taken on various features. Ensure that several sample measurements are taken at different locations on the same feature. Measure diameters of internal bores in six places to identify tapered and or oval conditions. Refer to Illustration 12.

Shaft and Journal Diameters



Illustration 13g06318222
Typical example of measuring an Outside Diameter (OD) Dimension of a spindle.
(C) Indicates the diameter of the shaft.
(D) Indicates the overall measurable length of the shaft journal.

Take measurements at locations (C1), (C2), and (C3).

Then take measurements at locations (C4), (C5), and (C6).

To ensure adequate life of the components, this document contains precise tolerances for measurements taken on various features. Ensure that several sample measurements are taken at different locations on the same feature. Measure diameters of journals in six places to identify tapered and or oval conditions. Refer to Illustration 13.

Specification of the Pin Bore of the Planetary Carrier

Pin Bore Inspection

Bores will usually show a contact area from the shaft that may be worn slightly. The bore may also have damage from some broaching, fretting, adhesion, or impact. If any of the following conditions exist, the planetary carrier shall not be reused:

  • The bore has a wear step that will stop a seal pick.

  • The shaft has spun in the bore.

  • The bore is elongated or cracked.

  • Significant damage from some broaching or fretting is present in the bore.

  • The pin bore exceeds the specifications for new parts.

Inspection Procedure

Complete the following steps to inspect the pin bore.

  1. Clean the pin bore thoroughly before inspecting.

    Pin bores and pins can be cleaned with cleaner for parts and a surface reconditioning pad that will not remove metal.

  2. Visually inspect the bore for damage and wear.

    Note: An adequate light source is necessary to inspect pin bores. An optical magnifier may also be used.

  3. Inspect the bore with a seal pick to detect any wear steps.

Refer to Table 5 for a summary of the specifications of the pin bores.

Reference: , SEBF8163Reuse and Salvage Guidelines, "Procedures to Salvage Thrust Faces on Planetary Carriers".

Summary of the Final Drive Planetary Carrier Pin Bore Tolerances



Illustration 14g06319011
Typical example of an internal planetary carrier with in bores on a dual plane.
(A) Pin Bore

Table 4
Final Drive Internal Planetary Carriers Pin Bore Tolerances (1)  Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Part Number  Tolerance
(A) 
Measurement  Measurement  Measurement 
4E-2166  Ø 42.342 ± 0.013 mm (1.6670 ± 0.0005 inch)  A1 A2 A3
8R-0233  Ø 35.279 ± 0.013 mm (1.3889 ± 0.0005 inch)  A1 A2 A3
8R-2198  Ø 42.342 ± 0.013 mm (1.6670 ± 0.0005 inch)  A1 A2 A3
8R-2537  Ø 35.279 ± 0.013 mm (1.3889 ± 0.0005 inch)  A1 A2 A3
8R-4571  Ø 44.42 ± 0.013 mm (1.7488 ± 0.0005 inch)  A1 A2 A3
8R-5959
137-3506 
Ø 77.605 ± 0.015 mm (3.0553 ± 0.0006 inch)  A1 A2 A3
8R-5960  Ø 120.03 ± 0.015 mm (4.7256 ± 0.0006 inch)  A1 A2 A3
9C-6027  Ø 48.007 ± 0.013 mm (1.8900 ± 0.0005 inch)  A1 A2 A3
110-5187  Ø 30.026 ± 0.013 mm (1.1821 ± 0.0005 inch)  A1 A2 A3
119-1096  Ø 48.007 ± 0.013 mm (1.8900 ± 0.0005 inch)  A1 A2 A3
129-4300  Ø 70.057 ± 0.013 mm (2.7581 ± 0.0005 inch)  A1 A2 A3
136-4838  Ø 35.278 ± 0.01 mm (1.3889 ± 0.0004 inch)  A1 A2 A3
218-3174  Ø 42.342 ± 0.013 mm (1.6670 ± 0.0005 inch)  A1 A2 A3
270-7672  Ø 53.015 ± 0.013 mm (2.0872 ± 0.0005 inch)  A1 A2 A3
244-1099  Ø 77.605 ± 0.015 mm (3.0553 ± 0.0006 inch)  A1 A2 A3
327-2232  Ø 42.342 ± 0.013 mm (1.6670 ± 0.0005 inch)  A1 A2 A3
360-9857  Ø 44.42 ± 0.013 mm (1.7488 ± 0.0005 inch)  A1 A2 A3
361-8064
386-0500 
Ø 59.406 ± 0.013 mm (2.3388 ± 0.0005 inch)  A1 A2 A3
364-2561  Ø 44.42 ± 0.013 mm (1.7488 ± 0.0005 inch)  A1 A2 A3
370-4416
386-0501 
Ø 59.406 ± 0.013 mm (2.3388 ± 0.0005 inch)  A1 A2 A3
388-1399  Ø 59.406 ± 0.013 mm (2.3388 ± 0.0005 inch)  A1 A2 A3
419-6354  Ø 95.347 ± 0.015 mm (3.7538 ± 0.0006 inch)  A1 A2 A3
(1) Note: The most current part number is identified in bold font when multiple part numbers are in a cell.


Illustration 15g06319028
Typical example of an external planetary carrier with in bores on a dual plane.
(B) Pin Bore

Table 5
Final Drive External Planetary Carriers Pin Bore Tolerances (1)  Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Part Number  Tolerance
(B) 
Measurement  Measurement  Measurement 
1V-1409
9K-4887 
Ø 31.768 ± 0.013 mm (1.2507 ± 0.0005 inch)  A1 A2 A3
1V-2281  Ø 42.342 ± 0.013 mm (1.6670 ± 0.0005 inch)  A1 A2 A3
1V-3335  Ø 35.279 ± 0.013 mm (1.3889 ± 0.0005 inch)  A1 A2 A3
1V-5059  Ø 84.821 ± 0.013 mm (3.3394 ± 0.0005 inch)  A1 A2 A3
2V-4149  Ø 77.605 ± 0.013 mm (3.0553 ± 0.0005 inch)  A1 A2 A3
2V-5722  Ø 44.42 ± 0.013 mm (1.7488 ± 0.0005 inch)  A1 A2 A3
3D-4222  Ø 84.821 ± 0.013 mm (3.3394 ± 0.0005 inch)  A1 A2 A3
3P-7006
193-8609 
Ø 42.418 ± 0.010 mm (1.670 ± 0.0004 inch)  A1 A2 A3
3V-2065
8R-4821 
Ø 52.339 ± 0.013 mm (2.0606 ± 0.0005 inch)  A1 A2 A3
3V-5601  Ø 52.339 ± 0.013 mm (2.0606 ± 0.0005 inch)  A1 A2 A3
4K-6389
7K-1848 
Ø 42.342 ± 0.013 mm (1.6670 ± 0.0005 inch)  A1 A2 A3
4V-8541  Ø 42.342 ± 0.013 mm (1.6670 ± 0.0005 inch)  A1 A2 A3
4V-9823  Ø 31.768 ± 0.013 mm (1.2507 ± 0.0005 inch)  A1 A2 A3
4V-5237  Ø 47.216 ± 0.013 mm (1.8589 ± 0.0005 inch)  A1 A2 A3
4V-9888  Ø 95.347 ± 0.013 mm (3.7538 ± 0.0005 inch)  A1 A2 A3
4Y-0475
5V-9361 
Ø 42.342 ± 0.013 mm (1.6670 ± 0.0005 inch)  A1 A2 A3
5K-1522
7K-1843 
Ø 42.342 ± 0.013 mm (1.6670 ± 0.0005 inch)  A1 A2 A3
5V-4704
9V-1396 
Ø 95.347 ± 0.013 mm (3.7538 ± 0.0005 inch)  A1 A2 A3
5V-6177  Ø 42.342 ± 0.013 mm (1.6670 ± 0.0005 inch)  A1 A2 A3
6K-5837  Ø 35.279 ± 0.013 mm (1.3889 ± 0.0005 inch)  A1 A2 A3
6S-3011  Ø 35.279 ± 0.013 mm (1.3889 ± 0.0005 inch)  A1 A2 A3
6D-8363
8W-9697 
Ø 59.406 ± 0.013 mm (2.3388 ± 0.0005 inch)  A1 A2 A3
7K-1847
8R-4821 
Ø 52.339 ± 0.013 mm (2.0606 ± 0.0005 inch)  A1 A2 A3
8K-5634  Ø 84.821 ± 0.013 mm (3.3394 ± 0.0005 inch)  A1 A2 A3
9K-1759  Ø 42.342 ± 0.013 mm (1.6670 ± 0.0005 inch)  A1 A2 A3
9U-3389  Ø 95.347 ± 0.013 mm (3.7538 ± 0.0005 inch)  A1 A2 A3
105-8709
468-4048 
Ø 59.406 ± 0.013 mm (2.3388 ± 0.0005 inch)  A1 A2 A3
118-9402
162-0195
162-0270 
Ø 77.605 ± 0.013 mm (3.0553 ± 0.0005 inch)  A1 A2 A3
127-9799
468-4053 
Ø 95.347 ± 0.013 mm (3.7538 ± 0.0005 inch)  A1 A2 A3
129-3046
463-9184 
Ø 59.406 ± 0.013 mm (2.3388 ± 0.0005 inch)  A1 A2 A3
180-0014
475-4918 
Ø 59.406 ± 0.013 mm (2.3388 ± 0.0005 inch)  A1 A2 A3
200-0819
467-4571 
Ø 77.605 ± 0.013 mm (3.0553 ± 0.0005 inch)  A1 A2 A3
203-1795  Ø 77.605 ± 0.13 mm (3.0553 ± 0.005 inch)  A1 A2 A3
244-1100  Ø 110.1 ± 0.015 mm (4.3346 ± 0.0006 inch)  A1 A2 A3
419-6355  Ø 120.03 ± 0.015 mm (4.726 ± 0.0006 inch)  A1 A2 A3
438-3417
467-4794 
Ø 59.406 ± 0.013 mm (2.3388 ± 0.0005 inch)  A1 A2 A3
468-4065  Ø 77.605 ± 0.013 mm (3.0553 ± 0.0005 inch)  A1 A2 A3
(1) Note: The most current part number is identified in bold font when multiple part numbers are in a cell.


Illustration 16g06319051
Typical example of a planetary carrier with pin bores on a single plane.
(C) Pin Bore

Table 6
Final Drive Planetary Carrier Pin Bore (Single Plane) Tolerances (1)  Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Part
Number 
Fit
Limit (2) 
Tolerances
(C) 
Measurement  Measurement  Measurement 
Minimum Maximum
216-8118
292-5438 
H8  Ø 45.000 mm (1.7717 inch)  Ø 45.039 mm (1.7732 inch)  A1 A2 A3
216-8120  —  Ø 39.80 mm (1.567 inch)
Reference 
—  A1 A2 A3
293-2098  H8  Ø 45.000 mm (1.7717 inch)  Ø 45.039 mm (1.7732 inch)  A1 A2 A3
(1) Note: The most current part number is identified in bold font when multiple part numbers are in a cell.
(2) Limits and Fit Tolerances per ISO 286.

Reusability of Gearing

Accurate inspection is critical for the life of any gear. The maximum life of any drive train can be obtained through proper inspection and repair procedures. If an unacceptable gear is reused, then there is a good possibility that the gear will fail. The gear that failed will destroy other components in the drive train. The technician that is inspecting should be familiar with all types of gear wear and damage. The most common reasons for gear failure are described in this guideline. Decisions regarding reuse and salvage of gears are aided in thorough inspections.

Note: Some gearing applications run in one direction. Thus wear should only occur on one side of the gear. If the inspection suggests that a gear is worn, then flipping the gear may be an option thus using the other side of the tooth. Most likely application of gear flipping will be to those gears that have symmetrical features.

Visual Inspections - Use the following general examples as a guide to inspect for the following common wear types, defects, critical part locations, and features:

  • Abrasive & Adhesive Wear

  • Uneven Wear Patterns

  • Corrosion

  • Cracks

  • Wear Steps

  • Fretting

  • Scoring, Dings, Dents, or Other Damage

Reference: SEBF8193 Reuse and Salvage Guidelines, "Reusability of Drive Train Gears" for more detailed information regarding general gear inspection.

Reference: Channel1, "Gear Tooth Inspection" https://channel1.mediaspace.kaltura.com/media/Gear+Tooth+Inspection/1_5ujdi5zp for a video representation of general gear inspection.

Dimensional Checks - Refer to the "Measurement Techniques" section before dimensional checks are performed. Refer to each components illustration and table of dimensions and acceptable tolerances to inspect for excessive wear. In addition to these dimensional inspections, each part must also pass one of the Non-Destructive Testing (NDT) methods listed in the "Crack Detection Methods" section.

Gear Inspection Examples



Illustration 17g06085440
(A) Tooth Face
(B) Fillet Area

Check fillet area (B) with a seal pick. Fillet area (B) must be free from notches or wear steps.

Note: If steps are found in the fillet area of a gear tooth, then DO NOT USE THE PART AGAIN.



Illustration 18g03427659
Typical example of a gear inspection using reflective paper.

Utilize a clean, white piece of paper with a dull finish that to reflect light onto the face of each gear tooth during an inspection.



Illustration 19g06085442
Illustration of view through eye piece of a pocket microscope.

If necessary use a microscope with light for enhanced view and to measure the defects. Refer to Tooling Table 3 for the part number.

Minor abrasive wear (C) may indicate that there is contamination in the gear case. Once the source of contamination has been found then, OK TO USE PART AGAIN.



Illustration 20g06033556
Typical example of a planetary gear with evidence of corrosion (D), OK TO USE THIS PART AGAIN.
(D) Corrosion

The presence of corrosion (D) may be due to contamination or as a result of the process used to clean the part. Identify the source of corrosion (D), then OK TO USE PART AGAIN.



Illustration 21g06033582
Typical example of spalling (E) on tooth face, DO NOT USE PART AGAIN.
(E) Spalling


Illustration 22g06033587
Typical example of pitting (F) on tooth surface, DO NOT USE PART AGAIN.
(F) Pitting


Illustration 23g03708114
Typical example of crack shown under Liquid Penetrant Testing (PT) of a gear, DO NOT USE THIS PART AGAIN. Refer to the "Liquid Penetrant Testing (PT)" section for testing instructions.


Illustration 24g06085444
Typical example of cracks found using Wet Magnetic Particle Testing (MPT), DO NOT USE THIS PART AGAIN. Refer to the "Wet Magnetic Particle Testing (MPT)" section for testing instructions.

Planetary Gear Bore Inspections



Illustration 25g03427695
Typical example of a planetary gear that requires further inspection of the bore.


Illustration 26g06008970
Typical example of brinelling found during a planetary gear bore inspection, DO NOT USE THIS PART AGAIN.

Inspect planetary gear bore for pitting, heat cracks, and brinelling. If pitting, heat cracks, or brinelling are found on the planetary gear bore then, DO NOT USE PART AGAIN.

Complete Steps 1 through 4 to inspect the planetary gear bore:



Illustration 27g06026642
Typical example of cleaning a planetary gear bore. After cleaning a planetary gear bore, OK TO USE THIS PART AGAIN.
(G) Planetary gear bore before cleaning.
(H) Planetary gear bore after cleaning.

  1. Clean the planetary gear bore thoroughly before inspecting.

    Note: Planetary gear bores can be cleaned with cleaner for parts and a nonmetallic pad for rubbing that will not remove metal.

  2. Visually inspect the planetary gear bore for damage and wear.

    Note: An adequate light source is necessary to inspect planetary gear bore. An optical magnifier may also be used.

  3. Inspect the planetary gear bore with a seal pick to detect any wear steps.

  4. Perform Wet Magnetic Particle Testing (MPT). Refer to the "Wet Magnetic Particle Testing (MPT)" section for testing instructions.

Reusability of the Final Drive Planetary Gears

The planetary gears are heavily loaded in final drive. All gears must meet the given standards. Refer to Reuse and Salvage Guideline, SEBF8193, "Reusability of Drive Train Gears" for additional information on final drive gears.

Planetary Gear Bore Reusability

Planetary gears with bores that function as a bearing outer race require special attention to the presence of corrosion or damage from foreign materials.

Extreme Pressure (EP) lubricants can cause corrosion. These lubricants are not recommended for use in Caterpillar final drives.

Check the bores of all planetary gears for other surface defects (cracks, pits, and so on).

Refer to Table 7 for the tolerances for reusability of the final drive planetary gear bores.



Illustration 28g06322321
Typical example of stains on the surface of the gear bore.

If stains can be removed from the gear bore surface with reconditioning pad, USE THIS PART AGAIN.

If pitting are found in the stained areas, then DO NOT USE GEAR AGAIN.



Illustration 29g06322341
Typical example of corrosion pitting on the gear bore. Due to surface pitting, DO NOT USE THIS PART AGAIN. The pitting will progress into spalling.


Illustration 30g06322347
Wash board texture and appearance on surface of the gear bore is called "Brinelling", DO NOT USE THIS PART AGAIN.

Summary of Final Drive Planetary Gear Bore Tolerances



Illustration 31g06318873
Typical example of planetary gear bore (D) measurement.
(D) Bore

Table 7
Final Drive Planetary Gear Bore Tolerances (1)  Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Part Number  Tolerance
(D) 
Measurement  Measurement  Measurement 
1V-8605
9C-8074 
Ø 77.625 ± 0.013 mm (3.0561 ± 0.0005 inch)  A1 A2 A3
2V-5710
9C-8072
9U-3124
186-4439 
Ø 57.127 ± 0.01 mm (2.2491 ± 0.0004 inch)  A1 A2 A3
3K-7020  Ø 51.872 ± 0.01 mm (2.0422 ± 0.0004 inch)  A1 A2 A3
3K-7110  Ø 43.218 ± 0.008 mm (1.7015 ± 0.0003 inch)  A1 A2 A3
4D-1569
4E-0403 
Ø 86.068 + 0.020 - 0.008 mm (3.3885 ± 0.0008 - 0.00031 inch)  A1 A2 A3
4E-3638
162-0191 
Ø 112.44 ± 0.01 mm (4.4268 ± 0.0004 inch)  A1 A2 A3
4V-0093  Ø 51.872 ± 0.01 mm (2.0422 ± 0.0004 inch)  A1 A2 A3
4V-9867  Ø 124.663 ± 0.02 mm (4.9080 ± 0.0008 inch)  A1 A2 A3
5K-4180  Ø 77.625 ± 0.013 mm (3.0561 ± 0.0005 inch)  A1 A2 A3
5V-1480  Ø 75.86 ± 0.03 mm (2.9866 ± 0.0012 inch)  A1 A2 A3
5V-4075  Ø 110.922 ± 0.025 mm (4.3670 ± 0.0010 inch)  A1 A2 A3
5V-4699
9U-3869 
Ø 124.663 ± 0.02 mm (4.9080 ± 0.0008 inch)  A1 A2 A3
5V-8921  Ø 51.872 ± 0.010 mm (2.0422 ± 0.0004 inch)  A1 A2 A3
6K-9129
7K-7237 
Ø 41.303 ± 0.010 mm (1.6261 ± 0.0004 inch)  A1 A2 A3
6S-3490  Ø 43.218 ± 0.008 mm (1.7015 ± 0.0003 inch)  A1 A2 A3
6W-0299  Ø 193.794 ± 0.020 mm (7.6297 ± 0.0008 inch)  A1 A2 A3
7G-2476  Ø 43.221 ± 0.008 mm (1.7016 ± 0.0003 inch)  A1 A2 A3
7G-2486  Ø 43.221 ± 0.008 mm (1.7016 ± 0.0003 inch)  A1 A2 A3
7G-3467  Ø 58.298 ± 0.01 mm (2.2952 ± 0.0004 inch)  A1 A2 A3
7G-3468  Ø 66.274 ± 0.013 mm (2.6092 ± 0.0005 inch)  A1 A2 A3
7G-3470  Ø 66.274 ± 0.013 mm (2.6092 ± 0.0005 inch)  A1 A2 A3
8K-0004  Ø 112.44 ± 0.01 mm (4.4268 ± 0.0004 inch)  A1 A2 A3
8R-2199  Ø 51.872 ± 0.01 mm (2.0422 ± 0.0004 inch)  A1 A2 A3
8R-7812
253-8920 
Ø 43.218 ± 0.008 mm (1.7015 ± 0.0003 inch)  A1 A2 A3
8R-9750  Ø 112.44 ± 0.01 mm (4.4268 ± 0.0004 inch)  A1 A2 A3
8R-9752  Ø 41.303 ± 0.010 mm (1.6261 ± 0.0004 inch)  A1 A2 A3
9C-1528
147-1740 
Ø 51.872 ± 0.01 mm (2.0422 ± 0.0004 inch)  A1 A2 A3
9C-5690  Ø 43.218 ± 0.008 mm (1.7015 ± 0.0003 inch)  A1 A2 A3
9C-6032
9U-2787 
Ø 57.536 ± 0.01 mm (2.2652 ± 0.0004 inch)  A1 A2 A3
9C-6335  Ø 51.872 ± 0.01 mm (2.0422 ± 0.0004 inch)  A1 A2 A3
9C-7725
164-3071 
Ø 57.127 ± 0.01 mm (2.2491 ± 0.0004 inch)  A1 A2 A3
9K-1758  Ø 51.872 ± 0.01 mm (2.0422 ± 0.0004 inch)  A1 A2 A3
9U-0972
121-7583 
Ø 77.625 ± 0.013 mm (3.0561 ± 0.0005 inch)  A1 A2 A3
9U-2974
152-1707 
Ø 118.1 ± 0.02 mm (4.6496 ± 0.0008 inch)  A1 A2 A3
102-2454
147-1206 
Ø 66.274 ± 0.013 mm (2.6092 ± 0.0005 inch)  A1 A2 A3
105-8740
233-6995 
Ø 75.0 ± 0.013 mm (2.9528 ± 0.0005 inch)  A1 A2 A3
108-8769  Ø 35.00 ± 0.010 mm (1.378 ± 0.0004 inch)  A1 A2 A3
110-4799
159-8169 
Ø 75.00 ± 0.013 mm (2.9528 ± 0.0005 inch)  A1 A2 A3
115-4878  Ø 112.776 ± 0.01 mm (4.4400 ± 0.0004 inch)  A1 A2 A3
115-4880  Ø 140.0 ± 0.02 mm (5.5118 ± 0.0008 inch)  A1 A2 A3
116-7712  Ø 51.872 ± 0.01 mm (2.0422 ± 0.0004 inch)  A1 A2 A3
127-9504  Ø 118.1 ± 0.02 mm (4.6496 ± 0.0008 inch)  A1 A2 A3
129-4299
354-1306 
Ø 92.267 ± 0.01 mm (3.6326 ± 0.0004 inch)  A1 A2 A3
180-0019
261-1082 
Ø 86.068 + 0.020 - 0.008 mm (3.3885 ± 0.0008 - 0.00031 inch)  A1 A2 A3
192-0816
237-0974 
Ø 112.44 ± 0.01 mm (4.4268 ± 0.0004 inch)  A1 A2 A3
208-7619  Ø 86.068 + 0.020 - 0.008 mm (3.3885 ± 0.0008 - 0.00031 inch)  A1 A2 A3
218-3172  Ø 51.872 ± 0.01 mm (2.0422 ± 0.0004 inch)  A1 A2 A3
221-8231  Ø 66.274 ± 0.013 mm (2.6092 ± 0.0005 inch)  A1 A2 A3
245-3519  Ø 112.5 ± 0.02 mm (4.4291 ± 0.0008 inch)  A1 A2 A3
245-3521  Ø 147.43 ± 0.02 mm (5.8043 ± 0.0008 inch)  A1 A2 A3
271-2354  Ø 66.274 ± 0.013 mm (2.6092 ± 0.0005 inch)  A1 A2 A3
281-9323  Ø 75.86 ± 0.03 mm (2.9866 ± 0.0012 inch)  A1 A2 A3
281-9324  Ø 112.44 ± 0.01 mm (4.4268 ± 0.0004 inch)  A1 A2 A3
325-5440  Ø 51.872 ± 0.01 mm (2.0422 ± 0.0004 inch)  A1 A2 A3
361-8085  Ø 77.625 ± 0.013 mm (3.0561 ± 0.0005 inch)  A1 A2 A3
364-3085  Ø 57.536 ± 0.01 mm (2.2652 ± 0.0004 inch)  A1 A2 A3
391-8927  Ø 112.44 ± 0.01 mm (4.4268 ± 0.0004 inch)  A1 A2 A3
417-1922  Ø 118.1 ± 0.013 mm (4.65 ± 0.0005 inch)  A1 A2 A3
417-1924  Ø 140 ± 0.02 mm (5.5 ± 0.001 inch)  A1 A2 A3
(1) Note: The most current part number is identified in bold font when multiple part numbers are in a cell.

Reusability of Planetary Shafts



Illustration 32g06320721
Typical example of a slip fit shaft with minor fretting, OK TO USE THIS PART AGAIN.

Fretting may occur on the contact surface of the shaft and carrier. Shafts can be reused if less than 50% of the contact width and 25% of the shaft diameter is affected. A shaft diameter in question should be measured and compared with the manufacturer's specifications.



Illustration 33g06319268
Fretting on a planetary shaft.

If the shaft meets all other specifications, USE THIS PART AGAIN.

Refer to Table 8 for the dimensional tolerances for reusability of the planetary shaft.

Summary of the Planetary Shafts Tolerances



Illustration 34g06318906
Typical example of planetary shaft measurements.
(E) Width
(F) Length

Table 8
Planetary Shafts Tolerances (1)  Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Part Number  Width Tolerance
(E) 
Length Tolerance
(F) 
Measurement  Measurement  Measurement 
1V-6663  Ø 95.321 ± 0.01 mm (3.7528 ± 0.0004 inch)  231.6 ± 0.5 mm (9.12 ± 0.02 inch)  C1 C2 C3
2D-6633
2G-6572
101-1505 
Ø 84.795 ± 0.008 mm (3.3384 ± 0.0003 inch)  165.1 ± 0.5 mm (6.50 ± 0.02 inch)  C1 C2 C3
2G-6571
3D-8416
101-1504 
Ø 59.380 ± 0.008 mm (2.3378 ± 0.0003 inch)  162.6 ± 0.5 mm (6.40 ± 0.02 inch)  C1 C2 C3
2V-1074
5K-0927 
Ø 35.253 ± 0.008 mm (1.3879 ± 0.0003 inch)  93.7 ± 0.5 mm (3.69 ± 0.02 inch)  C1 C2 C3
2V-4148  Ø 77.577 ± 0.010 mm (3.0542 ± 0.0004 inch)  165.10 ± 0.5 mm (6.500 ± 0.020 inch)  C1 C2 C3
2V-5737
186-4440 
Ø 44.397 ± 0.008 mm (1.7479 ± 0.0003 inch)  140 ± 1.0 mm (5.5 ± 0.04 inch)  C1 C2 C3
2V-6220
5K-1576 
Ø 42.316 ± 0.008 mm (1.6660 ± 0.0003 inch)  109.2 ± 0.5 mm (4.30 ± 0.02 inch)  C1 C2 C3
2V-6221
9K-1749 
Ø 42.316 ± 0.008 mm (1.6660 ± 0.0003 inch)  127.0 ± 0.5 mm (5.00 ± 0.02 inch)  C1 C2 C3
4E-5870  Ø 95.321 ± 0.010 mm (3.7528 ± 0.0004 inch)  222.5 ± 1.0 mm (8.76 ± 0.04 inch)  C1 C2 C3
4V-0094  Ø 42.316 ± 0.008 mm (1.6660 ± 0.0003 inch)  91.5 ± 0.5 mm (3.60 ± 0.02 inch)  C1 C2 C3
4V-3009
5K-4178
6W-7290
9U-0786 
Ø 52.316 ± 0.008 mm (2.0597 ± 0.0003 inch)  145 ± 1.0 mm (5.7 ± 0.04 inch)  C1 C2 C3
4V-4501  Ø 47.193 ± 0.008 mm (1.8580 ± 0.0003 inch)  162.5 ± 1.0 mm (6.40 ± 0.04 inch)  C1 C2 C3
4V-8534  Ø 42.316 ± 0.008 mm (1.6660 ± 0.0003 inch)  112.0 ± 0.5 mm (4.41 ± 0.02 inch)  C1 C2 C3
4V-9577
6K-9062 
Ø 31.742 ± 0.008 mm (1.2497 ± 0.0003 inch)  80.0 ± 0.5 mm (3.15 ± 0.02 inch)  C1 C2 C3
5V-4705
9V-6560
9V-8905 
Ø 95.321 ± 0.010 mm (3.7528 ± 0.0004 inch)  241 ± 1.0 mm (9.5 ± 0.04 inch)  C1 C2 C3
6P-6739  Ø 35.255 ± 0.006 mm (1.3879 ± 0.0002 inch)  67.3 ± 0.5 mm (2.65 ± 0.02 inch)  C1 C2 C3
6S-3771  Ø 35.255 ± 0.008 mm (1.3880 ± 0.0003 inch)  73.9 ± 0.5 mm (2.91 ± 0.02 inch)  C1 C2 C3
8P-7241  Ø 47.193 ± 0.006 mm (1.8580 ± 0.0002 inch)  109 ± 0.25 mm (4.3 ± 0.010 inch)  C1 C2 C3
8R-0248  Ø 35.253 ± 0.008 mm (1.3879 ± 0.0003 inch)  83 ± 0.5 mm (3.3 ± 0.02 inch)  C1 C2 C3
8R-1888  Ø 44.397 ± 0.008 mm (1.7479 ± 0.0003 inch)  111 ± 0.5 mm (4.4 ± 0.02 inch)  C1 C2 C3
8R-2200  Ø 42.316 ± 0.008 mm (1.6660 ± 0.0003 inch)  99.0 ± 0.5 mm (3.90 ± 0.02 inch)  C1 C2 C3
8R-3252  Ø 47.981 ± 0.008 mm (1.8890 ± 0.0003 inch)  120.5 ± 0.5 mm (4.74 ± 0.02 inch)  C1 C2 C3
8R-6933  Ø 77.577 ± 0.010 mm (3.0542 ± 0.0004 inch)  151 ± 1.0 mm (5.9 ± 0.04 inch)  C1 C2 C3
8R-6937  Ø 120.00 ± 0.012 mm (4.7244 ± 0.0005 inch)  254 ± 1.0 mm (10.0 ± 0.04 inch)  C1 C2 C3
8X-5689  Ø 77.577 ± 0.010 mm (3.0542 ± 0.0004 inch)  169.7 ± 0.5 mm (6.68 ± 0.02 inch)  C1 C2 C3
9C-6317  Ø 42.316 ± 0.008 mm (1.6660 ± 0.0003 inch)  89.8 ± 0.5 mm (3.54 ± 0.02 inch)  C1 C2 C3
105-8748
297-3030 
Ø 59.38 ± 0.010 mm (2.338 ± 0.0004 inch)  142.7 ± 1.0 mm (5.62 ± 0.04 inch)  C1 C2 C3
105-9639  Ø 47.193 ± 0.006 mm (1.8580 ± 0.0002 inch)  150.5 ± 0.5 mm (5.93 ± 0.02 inch)  C1 C2 C3
109-0292  Ø 30 ± 0.008 mm (1.2 ± 0.0003 inch)  85 ± 0.5 mm (3.3 ± 0.02 inch)  C1 C2 C3
129-4323  Ø 70.029 ± 0.010 mm (2.7570 ± 0.0004 inch)  103.3 ± 0.5 mm (4.07 ± 0.02 inch)  C1 C2 C3
203-1817  Ø 77.577 ± 0.010 mm (3.0542 ± 0.0004 inch)  184.7 ± 0.5 mm (7.27 ± 0.02 inch)  C1 C2 C3
223-5836
297-3031 
Ø 77.577 ± 0.010 mm (3.0542 ± 0.0004 inch)  180.5 ± 0.5 mm (7.11 ± 0.02 inch)  C1 C2 C3
245-5946  Ø 77.58 ± 0.010 mm (3.0543 ± 0.0004 inch)  115 ± 1.0 mm (4.5 ± 0.04 inch)  C1 C2 C3
245-5947  Ø 110 ± 0.012 mm (4.3 ± 0.0005 inch)  232 ± 1.0 mm (9.1 ± 0.04 inch)  C1 C2 C3
270-9307  Ø 52.99 ± 0.008 mm (2.086 ± 0.0003 inch)  90.5 ± 0.5 mm (3.56 ± 0.02 inch)  C1 C2 C3
297-3032  Ø 95.321 ± 0.01 mm (3.7528 ± 0.0004 inch)  208.8 ± 1.0 mm (8.22 ± 0.04 inch)  C1 C2 C3
327-2243  Ø 42.316 ± 0.008 mm (1.6660 ± 0.0003 inch)  97 ± 0.5 mm (3.8 ± 0.02 inch)  C1 C2 C3
361-8065  Ø 59.38 ± 0.010 mm (2.338 ± 0.0004 inch)  111.5 ± 0.5 mm (4.39 ± 0.02 inch)  C1 C2 C3
366-5768  Ø 44.397 ± 0.008 mm (1.7479 ± 0.00031 inch)  102.5 ± 0.5 mm (4.04 ± 0.02 inch)  C1 C2 C3
369-7660  Ø 59.38 ± 0.010 mm (2.338 ± 0.0004 inch)  142.7 ± 0.5 mm (5.62 ± 0.02 inch)  C1 C2 C3
419-6356  Ø 95.321 ± 0.010 mm (3.7528 ± 0.0004 inch)  169 ± 1 mm (6.7 ± 0.04 inch)  C1 C2 C3
419-6357  Ø 120 ± 0.012 mm (4.7 ± 0.0005 inch)  287 ± 1 mm (11.3 ± 0.04 inch)  C1 C2 C3
460-1456  Ø 59.38 ± 0.010 mm (2.3378 ± 0.0004 inch)  142.7 ± 0.5 mm (5.62 ± 0.02 inch)  C1 C2 C3
468-4042  Ø 95.321 ± 0.010 mm (3.7528 ± 0.0004 inch)  208.8 ± 1.0 mm (8.22 ± 0.04 inch)  C1 C2 C3
468-4044  77.577 ± 0.010 mm (3.0542 ± 0.0004 inch)  180.5 ± 0.5 mm (7.11 ± 0.02 inch)  C1 C2 C3
468-4045  Ø 77.577 ± 0.010 mm (3.0542 ± 0.0004 inch)  186.8 ± 0.5 mm (7.35 ± 0.02 inch)  C1 C2 C3
470-0922  Ø 59.38 + 0.010 - 0.00 mm (2.338 + 0.0004 - 0.000 inch)  142.7 ± 0.5 mm (5.62 ± 0.02 inch)  C1 C2 C3
(1) Note: The most current part number is identified in bold font when multiple part numbers are in a cell.


Illustration 35g06369426
Typical example of planetary shaft measurement of part number 215-7488.

Table 9
Planetary Shafts Tolerances
Part Number 215-7488 
Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Location  Minimum  Maximum  Measurement  Measurement  Measurement 
78.0 mm (3.07086 inch)  78.2 mm (3.07873 inch)       
30.0 mm (1.18110 inch)  30.05 mm (1.18307 inch)       
25.6 mm (1.00787 inch)  25.7 mm (1.01181 inch)       
7.5 mm (0.29528 inch)  8.5 mm (0.33465 inch)       
Ø 45.33 mm (1.78464 inch)  Ø 45.35 mm (1.78543 inch)  C1 C2 C3
Ø 45.3 mm (1.78346 inch)  Ø 45.5 mm (1.79134 inch)  C1 C2 C3
Ø 44.9 mm (1.76771 inch)  Ø 44.95 mm (1.76968 inch)  C1 C2 C3
Ø 39.989 mm (1.57437 inch)  Ø 40.000 mm (1.57480 inch)  C1 C2 C3
Ø 34.85 mm (1.37204 inch)  Ø 35.0 mm (1.37795 inch)  C1 C2 C3


Illustration 36g06369452
Typical example of planetary shaft measurement of part number 215-8060.

Table 10
Planetary Shafts Tolerances
Part Number 215-8060 
Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Location  Minimum  Maximum  Measurement  Measurement  Measurement 
39.95 mm (1.573 inch)  Reference  C1 C2 C3
39.8 mm (1.57 inch)  Reference  C1 C2 C3
72.3 mm (2.85 inch)  Reference       

Final Drive Spindle Spline and Hub Reusability

General Guidelines for Inspection of Splines

The spindles and splines must be inspected prior to any repair. These splines are subject to high loads. This makes accurate inspection essential. Splines should be inspected immediately after removal. If the splines are not immediately inspected, hydraulic oil should be applied to each machined surface to prevent rust or corrosion. If spline on spindle is cracked, DO NOT USE AGAIN.

Always use proper lifting devices for the safety of the operator and to prevent damage to the machined surface. Personal protective Equipment (PPE) should be worn always for the operator's protection.

Signs of Potential Failure

The key element to analyzing damage on final drive splines is determining if the damage will progress to a failure before the next Planned Component Rebuild (PCR). The application and size of splines are important in determining if the damage will progress.

There are two typical signs of failure:

  • Spline wear or fracture from misalignment

  • Cracking from fatigue which could lead to fracture

Spline Wear and Misalignment

Spline wear is the result of relative motion between mating spline teeth. High loading, insufficient lubrication, vibration, and abrasive materials may result in wear. Typically, splines can be reused if less than a 0.203 mm (0.0080 inch) wear step exists. When spline wear is excessive, movement of the joint increases causing misalignment and an imbalance which increases the rate of the deterioration of the spline. Excess clearance between splines will also create shock loading during speed, load, and/or direction changes.

There is normally a small amount of relative motion between mating spline teeth. Uneven contact patterns on teeth of the splines are the result of misalignment of one or both of the mating splines. The spline teeth will not fully engage if the teeth are misaligned. This means that only a portion of each tooth is carrying the full load. Misalignment of teeth causes high contact pressures on the portion of the tooth that carries the load. The damage on the surface that is caused by these conditions is spline wear and fretting. Misalignment can be identified by the uneven contact pattern on the spline teeth.

Misalignment of the spline can be caused by worn bearings, damaged bearings, bores of the carrier, faces of the carrier, or shafts. If any spline displays uneven contact patterns, be sure to check for misalignment and correct the problem.

Misaligned splines can be reused if the splines meet the specifications for reusability.

Cracks on Spline Teeth from Fatigue

Numerous broken spline teeth may be the result of failure from bending fatigue. The operational loads create tensile stress in the fillet on the loaded side of the tooth. With enough high loads and cycles, these stresses can cause cracks from fatigue. A crack from fatigue could cause a tooth to separate from the parent metal. Cracking can also occur between the root of the tooth and a bolt hole or inside diameter of the part.

Visual Inspection

Splines can be visually inspected. To ensure the best results, a magnifying glass and a strong light source such as sunlight are recommended. It can also be difficult to distinguish between small scratches and small cracks. If unable to determine scratches from hair line cracks, then perform Liquid Penetrant Testing (PT) or Wet Magnetic Particle Testing (MPT).

Ensure to inspect all spline. If damaged spline is found, all spline that mate to it and all splines that are 180° from the damaged spline should be reinspected for possible fatigue from bending. Refer to "Crack Detection Methods" section for Non-Destructive Testing (NDT) procedures.

If spline is damage from misalignment, then DO NOT USE AGAIN. Abnormal wear will not permit full tooth contact thus result in high contact pressures.



Illustration 37g01716065
Typical example of check spline for wear steps with a seal pick.

If the splines stop the seal pick on the worn area, measure the splines before reusing. Generally, a 0.152 mm (0.0060 inch) wear step will stop a seal pick.

Typically spline can be reused if step measures less than 0.203 mm (0.0080 inch)

Visual Examples of Spline

Normal Wear

If spline has no significant wear (J) steps, then OK TO USE THIS PART AGAIN.



Illustration 38g01240327
Internal spline with full contact and even wear, OK TO USE THIS PART AGAIN.


Illustration 39g01240340
Spline shows signs of even loading and full contact, OK TO USE THIS PART AGAIN.


Illustration 40g01240365
The spline has an external wear step, but the spline meets specifications for reusability. Corrosion from fretting is also apparent. This corrosion is due to lack of lubrication, OK TO USE THIS PART AGAIN.

Wear Steps



Illustration 41g06122439
Typical example of an internal spline with significant wear (L) steps, DO NOT USE AGAIN.
(L) Wear


Illustration 42g06319105
Check the ends of location of the engagement of the splines.

If wear steps are found on either external or internal splines, drag a seal pick across the step. If the wear step stops the pick and measures more than 0.203 mm (0.0080 inch), then DO NOT USE AGAIN.

Remember to check the ends of the location of the engagement of the splines. If splines are not worn evenly, DO NOT USE THE PART AGAIN. Check mating spline for alignment.

Corrosion and Pitting



Illustration 43g06324680
Typical example of corrosion from poor storage techniques, clean inspect for pitting. If excessive pitting, then DO NOT USE THIS PART AGAIN.

Damage to Teeth



Illustration 44g06324678
Typical example of spline damage from poor handling, but no signs of cracking. Use a polishing stone to smooth any raised material from the indentation, OK TO USE THIS PART AGAIN.


Illustration 45g06324674
Typical example of spline damage from poor handling with a sign of cracking. Use a polishing stone to smooth any raised material from the indentation. If evidence of crack after removal of raised material, then DO NOT USE THIS PART AGAIN.


Illustration 46g01240382
A spline is cracked in the area of the root and the crack has progressed into the adjacent splines, DO NOT USE THIS PART AGAIN.

Crack from Fatigue on Spindles



Illustration 47g06324684
Typical example of a crack extending from the spline into the bolt hole. The bolt hole is weakened and premature failure will result, DO NOT USE THIS PART AGAIN.


Illustration 48g06324686
Typical example of a crack in the root of the spline tooth, DO NOT USE THIS PART AGAIN.

Spline Wear Measurement Procedures

Internal Spline



Illustration 49g06321306
Typical wear step on an internal spline.


Illustration 50g06075213
Typical example of taking an internal spline measurement.


Illustration 51g06181320
(G) 1, (G) 2, and (G) 3 Measurement Locations

The location of the gage pins at 60° intervals is critical to the formula. These three locations will provide information about the wear of the part. Refer to Illustration 51.

An inside micrometer must be positioned to measure the shortest distance points on the gage pins. This procedure will provide the measurement of the wear on the spline. The gage pin diameter for each individual part is determined by the size and pitch of the spline.

Calculate the average of the values taken from locations (G) 1, (G) 2, and (G) 3. The difference between the measurements will determine if there is an out of round condition caused by poor load distribution on the splines.

Place gage pins at 60° intervals on the planetary carrier. The location of the gage pins at 60° intervals is critical to the formula. These three locations will provide information about the wear of the part.

Steps 1 through 4 demonstrate an example of the process to calculation internal spline roundness. Provided is an example of performing spline reusability calculations of a reaction hub part number 137-8628 for a 994 wheel loader. Refer to Table 20 for specifications:

  1. Take measurements at locations (G) 1, (G) 2, and (G) 3 between gage pins. Taken measurements are recorded in Table 11.

    Table 11
    994 Wheel Loader Reaction Hub (137-8628) Internal Spline
    Example of Recording 3 Measurements Taken 
    Location  Measurements Taken 
    G1  Ø 465.705 mm (18.3348 inch) 
    G2  Ø 465.920 mm (18.3433 inch) 
    G3  Ø 466.180 mm (18.3535 inch) 

  2. Add the measurements together to calculate the sum. The sum of the three measurements is 1397.805 mm (55.0316 inch).

    Table 12
    994 Wheel Loader Reaction Hub (137-8628) Internal Spline
    Example of Calculating Sum of 3 Measurements Taken 
    Measurement
    Locations 
    Calculation  SUM Total = 
    G1, G2, and G3  G1 + G2 + G3  1397.805 mm (55.0316 inch) 

  3. Divide the sum of the measurements taken by 3 to calculate the average. The calculated average of 465.935 mm (18.3439 inch) is less than the reusability specification of 466.167 mm (18.3530 inch). In this example the internal spline is within the reusability specification and therefore passes this test, proceed to Step 4.

    If the internal spline is greater than the reusability specification, then DO NOT USE THE PART AGAIN.

    Table 13
    994 Wheel Loader Reaction Hub (137-8628) Internal Spline
    Example of Calculating Average of the 3 Measurements Taken 
    Location  Calculations  Results 
    G1, G2, and G3  (G1 + G2 + G3) / 3
    = Avg 
    Ø 465.935 mm (18.3439 inch) 
    Refer to Specifications in Table 20.  Reusability
    Specification 
    Ø 466.17 mm (18.353 inch) 
    Avg Specification  Avg > Reusability Specification = Fail
    Avg < Reusability Specification = Pass 
    Avg = Ø 465.935 mm (18.3439 inch) < than Reusability Specification of Ø 466.17 mm (18.353 inch)
    Pass 

  4. The difference between the high measurement and the low measurement determines if the spline is round. Out-of-round or ovality can cause uneven load distribution on the splines. Calculate the difference between the high and the low measurement by subtracting the high measurement of Ø 466.180 mm (18.3535 inch) from the low measurement of Ø 465.705 mm (18.3348 inch). The difference between the high and low measurements determine if the spindle can be reused. The difference in this example is 0.475 mm (0.0187 inch).

    Maximum difference between the high measurement and the low measurement allowance of 0.47 mm (0.019 inch) and the actual difference of 0.475 mm (0.0187 inch) is greater than the allowable maximum difference.

    If the maximum difference between the high measurement and the low measurement is greater than 0.47 mm (0.019 inch) the internal spline is considered to be out-of-round or oval shaped and not reusable, DO NOT USE THE PART AGAIN.

    Table 14
    994 Wheel Loader Reaction Hub (137-8628) Internal Spline
    Example of Determining the Difference from the 3 Measurements Taken 
    Location  Calculations  Results 
    G1  Low  Ø 465.705 mm (18.3348 inch) 
    G2  Mid  Ø 465.920 mm (18.3433 inch) 
    G3  High  Ø 466.180 mm (18.3535 inch) 
    G3 - G1  High and Low
    Difference = 
    0.475 mm (0.0187 inch) 
    Refer to Specifications in Table 20.  Maximum
    Difference
    Allowance 
    0.47 mm (0.019 inch) 
    Actual Difference (H - L) Maximum Difference Allowance  Actual Difference < Maximum Difference Allowance = Fail
    Actual Difference > Maximum Difference Allowance = Pass 
    Actual Difference = 0.475 mm (0.0187 inch) < than Maximum Difference Allowance of 0.47 mm (0.019 inch)
    Fail 

External Spline



Illustration 52g06321303
Typical wear step on an external spline.


Illustration 53g06322365
Typical example of using a straight edge to measure a wear step on a spline tooth.

If possible, use a straight edge and a feeler gauge to measure questionable spline wear.



Illustration 54g01716121
Typical example of a wear step. A 0.152 mm (0.0060 inch) wear step is required to stop a seal pick. If the wear step is greater than 0.203 mm (0.0080 inch), then DO NOT USE THE PART AGAIN.


Illustration 55g06075290
Typical example of taking a Measurement Over Pins (MOP).


Illustration 56g06181327
(L) 1, (L) 2, and (L) 3 Measurement Locations

The location of gage pins at 60° intervals is critical to the formula. These three locations will provide information about the wear of the part. Refer to Illustration 56.

Note: For odd splines take measurement as close to 180° from each gage pin as possible.

Place gage pins at 60° intervals on the spline. Take the measurements over gage pins that are located approximately 180° away from each other.

A micrometer must be positioned to measure the highest external points on the gage pins. This procedure will provide the measurement of the wear of the spline. The gage pin diameter for each individual part is determined by the size and pitch of the spline. Calculate the average from the values taken. The difference between the measurements will determine if there is an out of round condition caused by poor load distribution on the splines.

Steps 1 through 4 demonstrate an example of the process to calculation external spline roundness. Provided is an example of performing spline reusability calculations of a spindle part number 131-1296 for a 990 Series II wheel loader.


NOTICE

The spline must pass the roundness tests by meeting the reusability specification measurement over gage pins and the maximum difference between the high and low measurements to be reused again.


  1. Take measurements at locations (L) 1, (L) 2, and (L) 3 over gage pins. Taken measurements are recorded in Table 15.

    Table 15
    990 Series II Wheel Loader Spindle (131-1296) External Spline
    Example of Recording 3 Measurements Taken 
    Location  Measurements Taken 
    L1  Ø 299.000 mm (11.7716 inch) 
    L2  Ø 298.900 mm (11.7677 inch) 
    L3  Ø 298.800 mm (11.7638 inch) 

  2. Add the measurements together to calculate the sum. The sum of the three measurements is 896.700 mm (35.3031 inch).

    Table 16
    990 Series II Wheel Loader Spindle (131-1296) External Spline
    Example of Calculating Sum of 3 Measurements Taken 
    Measurement
    Locations 
    Calculation  SUM Total = 
    L1, L2, and L3  L1 + L2 + L3  896.700 mm (35.3031 inch) 

  3. Divide the sum of the measurements taken by 3 to calculate the average. The calculated average of 298.900 mm (11.7677 inch) is greater than the reusability specification of 298.781 mm (11.7630 inch). In this example the external spline is within the reusability specification and therefore passes this test, proceed to Step 4.

    If the external spline is less than the reusability specification, then DO NOT USE THE PART AGAIN.

    Table 17
    990 Series II Wheel Loader Spindle (131-1296) External Spline
    Example of Calculating the Average of 3 Measurements Taken 
    Location  Calculations  Results 
    L1, L2, and L3  (L1 + L2 + L3) / 3
    = Avg 
    Ø 298.900 mm (11.7677 inch) 
    Refer to Specifications in Table 19.  Reusability
    Specification 
    Ø 298.781 mm (11.7630 inch) 
    Avg Specification  Avg < Reusability Specification = Fail
    Avg > Reusability Specification = Pass 
    Avg = Ø 298.900 mm (11.7677 inch) > than Reusability Specification of Ø 298.781 mm (11.7630 inch)
    Pass 

  4. The difference between the high measurement and the low measurement determines if the spline is round. Out-of-round or ovality can cause uneven load distribution on the splines. Calculate the difference between the high and the low measurement by subtracting the high measurement of Ø 299.000 mm (11.7716 inch) from the low measurement of Ø 298.800 mm (11.7638 inch). The difference between the high and low measurement determine if the spindle can be reused. The difference in this example is 0.200 mm (0.0079 inch).

    Maximum difference between the high measurement and the low measurement allowance of 0.30 mm (0.012 inch) and the actual difference of 0.200 mm (0.0079 inch) is less than the allowable maximum difference.

    If the maximum difference between the high measurement and the low measurement is greater than 0.30 mm (0.012 inch) the external spline is considered to be out-of-round or oval shaped and not reusable, DO NOT USE THE PART AGAIN.

    Table 18
    990 Series II Wheel Loader Spindle (131-1296) External Spline
    Example of Determining the Difference from the 3 Measurements Taken 
    Location  Calculations  Results 
    L1  High  Ø 299.000 mm (11.7716 inch) 
    L2  Mid  Ø 298.900 mm (11.7677 inch) 
    L3  Low  Ø 298.800 mm (11.7638 inch) 
    L1 - L3  High and Low
    Difference = 
    0.200 mm (0.0079 inch) 
    Refer to Specifications in 19.  Maximum
    Difference
    Allowance 
    0.30 mm (0.012 inch) 
    Actual Difference (H - L) Maximum Difference Allowance  Actual Difference > Maximum Difference Allowance = Fail
    Actual Difference < Maximum Difference Allowance = Pass 
    Actual Difference = 0.200 mm (0.0079 inch) < than Maximum Difference Allowance of 0.30 mm (0.012 inch)
    Pass 

Methods of Securing Gage Pins



Illustration 57g06075262
Typical example of MOP.
(N) Rubber Band
(P) Gage Pins

Note: Rubber band (N) can be used to secure gage pins (P) in place when taking measurements of external splines. Refer to Illustration 57.



Illustration 58g06124082
Typical example of a magnetizer/ demagnetizer.


NOTICE

If gage pins are magnetized, then demagnetize after use. When a gage pin is magnetized, cuttings and iron powder will easily stick to the surface, thus precipitating wear.


Gage pins can be magnetized to aid in taking measurements between or over gage pins. Ensure that gage pins are demagnetized after use and stored properly.

Spline Summary of Dimensions for Reusability



Illustration 59g06321299
Typical example of taking a Measurement Over Pins (MOP) (A) of spindle spline.
(A) Measurement Over Pins (MOP)

Table 19
Spindle Spline Dimensions and Tolerances (1)  Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Part Number  Gage Pin Diameter  Original Specification
Measurement Over Gage Pins 
Reusability Specification
Measurement Over Gage Pins 
Maximum Difference
High and Low Measurement 
Measurement 
1V-1317  Ø 6.3500 mm (0.25000 inch)  Ø 140.0861 mm (5.51519 inch)  Ø 140.0268 mm (5.51285 inch)  0.0593 mm (0.00234 inch)  L1
1V-1379
4K-6388 
Ø 6.3500 mm (0.25000 inch)  Ø 121.0081 mm (4.76409 inch)  Ø 120.9527 mm (4.76191 inch)  0.0554 mm (0.00218 inch)  L1
1V-1392
2V-5132
7K-1138 
Ø 6.3500 mm (0.25000 inch)  Ø 120.8811 mm (4.75909 inch)  Ø 120.8256 mm (4.75690 inch)  0.0555 mm (0.00219 inch)  L1
1V-1554
6K-8848
7K-7468 
Ø 3.9675 mm (0.15620 inch)  Ø 88.4022 mm (3.48039 inch)  Ø 88.3458 mm (3.47817 inch)  0.0564 mm (0.00222 inch)  L1
1V-4718
6K-5836
7K-7459 
Ø 6.3500 mm (0.25000 inch)  Ø 98.7222 mm (3.88669 inch)  Ø 98.6713 mm (3.88469 inch)  0.0509 mm (0.00200 inch)  L1
1V-4975  Ø 4.7625 mm (0.18750 inch)  Ø 169.6212 mm (6.67799 inch)  Ø 169.5507 mm (6.67521 inch)  0.0705 mm (0.00278 inch)  L1
3Q-6136  Ø 6.3500 mm (0.25000 inch)  Ø 140.0860 mm (5.51519 inch)  Ø 140.0267 mm (5.51285 inch)  0.0593 mm (0.00234 inch)  L1
3V-2478
5V-7635
6W-7271 
Ø 4.7625 mm (0.18750 inch)  Ø 258.374 mm (10.17218 inch)  Ø 258.2842 mm (10.16865 inch)  0.0897 mm (0.00353 inch)  L1
3Y-4071  Ø 6.3500 mm (0.25000 inch)  Ø 98.722 mm (3.8867 inch)  Ø 98.67113 mm (3.88468 inch)  0.05097 mm (0.00200 inch)  L1
3Y-5779  Ø 6.3500 mm (0.25000 inch)  Ø 121.076 mm (4.7668 inch)  Ø 120.0207 mm (4.72522 inch)  0.0553 mm (0.00218 inch)  L1
3Y-7724
4V-9580
9C-2312 
Ø 3.9675 mm (0.15620 inch)  Ø 88.402 mm (3.4804 inch)  Ø 88.3456 mm (3.47817 inch)  0.0564 mm (0.00222 inch)  L1
4V-5213
9C-0616 
Ø 6.3500 mm (0.25000 inch)  Ø 124.299 mm (4.8937 inch)  Ø 124.2429 mm (4.89144 inch)  0.0561 mm (0.00221 inch)  L1
4V-9822
4Y-0984
9C-2313 
Ø 2.3825 mm (0.09380 inch)  Ø 77.112 mm (3.0359 inch)  Ø 77.0446 mm (3.03325 inch)  0.0674 mm (0.00265 inch)  L1
5K-1651  Ø 6.3500 mm (0.25000 inch)  Ø 121.0081 mm (4.76409 inch)  Ø 120.9527 mm (4.76191 inch)  0.0554 mm (0.00218 inch)  L1
5V-4062
9C-0615
138-4805 
Ø 6.3500 mm (0.25000 inch)  Ø 124.299 mm (4.8937 inch)  Ø 124.2429 mm (4.89144 inch)  0.0561 mm (0.00221 inch)  L1
5V-5692  Ø 6.3500 mm (0.25000 inch)  Ø 120.881 mm (4.7591 inch)  Ø 120.8255 mm (4.75690 inch)  0.0555 mm (0.00219 inch)  L1
6S-3012  Ø 3.9675 mm (0.15620 inch)  Ø 88.4020 mm (3.48039 inch)  Ø 88.3456 mm (3.47817 inch)  0.0564 mm (0.00222 inch)  L1
6W-7349  Ø 4.7625 mm (0.18750 inch)  Ø 299.080 mm (11.7748 inch)  Ø 298.9818 mm (11.77091 inch)  0.0982 mm (0.00387 inch)  L1
7K-3737  4.7625 mm (0.18750 inch)
Ø 4.763 mm (0.1875 inch) 
Ø 169.545 mm (6.6750 inch)  Ø 169.4744 mm (6.67221 inch)  0.0706 mm (0.00278 inch)  L1
7U-0774  Ø 6.3500 mm (0.25000 inch)  Ø 140.086 mm (5.5152 inch)  Ø 140.0267 mm (5.51285 inch)  0.0593 mm (0.00234 inch)  L1
7V-8640
9C-2310 
Ø 6.3500 mm (0.25000 inch)  Ø 124.371 mm (4.8965 inch)  Ø 124.3150 mm (4.89428 inch)  0.0560 mm (0.00221 inch)  L1
8K-6574  Ø 4.7625 mm (0.18750 inch)  Ø 207.6679 mm (8.17589 inch)  Ø 207.5892 mm (8.17279 inch)  0.0787 mm (0.00310 inch)  L1
8K-6929  Ø 4.7625 mm (0.18750 inch)  Ø 169.545 mm (6.6750 inch)  Ø 169.4744 mm (6.67221 inch)  0.0706 mm (0.00278 inch)  L1
8S-4173  Ø 4.8768 mm (0.19200 inch)  Ø 207.9219 mm (8.18589 inch)  Ø 207.8434 mm (8.18279 inch)  0.0785 mm (0.00309 inch)  L1
8V-6388  Ø 6.3500 mm (0.25000 inch)  Ø 140.086 mm (5.5152 inch)  Ø 140.0267 mm (5.51285 inch)  0.0593 mm (0.00234 inch)  L1
9C-1639
138-4804 
Ø 6.3500 mm (0.25000 inch)  Ø 121.008 mm (4.7641 inch)  Ø 120.9526 mm (4.76191 inch)  0.0554 mm (0.00218 inch)  L1
9K-4966  Ø 6.3500 mm (0.25000 inch)  Ø 121.0081 mm (4.76409 inch)  Ø 120.9527 mm (4.76191 inch)  0.0554 mm (0.00218 inch)  L1
9Q-5379
388-4764 
Ø 4.7630 mm (0.18752 inch)  Ø 169.621 mm (6.6780 inch)  Ø 169.5505 mm (6.67520 inch)  0.0705 mm (0.00278 inch)  L1
9V-1330  Ø 4.762 mm (0.1875 inch)  Ø 169.545 mm (6.6750 inch)  Ø 169.4744 mm (6.67221 inch)  0.0706 mm (0.00278 inch)  L1
116-6260  Ø 4.7625 mm (0.18750 inch)  Ø 299.080 mm (11.7748 inch)  Ø 298.9818 mm (11.77091 inch)  0.0982 mm (0.00387 inch)  L1
131-1296  Ø 4.7625 mm (0.18750 inch)  Ø 299.080 mm (11.7748 inch)  Ø 298.9818 mm (11.77091 inch)  0.0982 mm (0.00387 inch)  L1
135-7742
417-0990 
Ø 4.7625 mm (0.18750 inch)  Ø 169.621 mm (6.678 inch)  Ø 169.5505 mm (6.67520 inch)  0.0705 mm (0.00278 inch)  L1
137-8627  Ø 4.7625 mm (0.18750 inch)  Ø 481.993 mm (18.9761 inch)  Ø 481.8563 mm (18.97068 inch)  0.1367 mm (0.00538 inch)  L1
142-7562
197-8287 
Ø 4.7625 mm (0.18750 inch)  Ø 169.621 mm (6.678 inch)  Ø 169.5505 mm (6.67520 inch)  0.0705 mm (0.00278 inch)  L1
147-6457  Ø 4.7625 mm (0.18750 inch)  Ø 190.017 mm (7.4810 inch)  Ø 189.9422 mm (7.47802 inch)  0.0749 mm (0.00295 inch)  L1
151-3036
489-3400 
Ø 4.7625 mm (0.18750 inch)  Ø 190.017 mm (7.481 inch)  Ø 189.9422 mm (7.47802 inch)  0.0749 mm (0.00295 inch)  L1
180-0017
392-7976 
Ø 4.7625 mm (0.18750 inch)  Ø 169.621 mm (6.6780 inch)  Ø 169.5505 mm (6.67520 inch)  0.0705 mm (0.00278 inch)  L1
205-0747
482-1805 
Ø 4.7625 mm (0.18750 inch)  Ø 169.621 mm (6.6780 inch)  Ø 169.5505 mm (6.67520 inch)  0.0705 mm (0.00278 inch)  L1
244-1095  Ø 4.0005 mm (0.1575 inch)  Ø 347.502 mm (13.6812 inch)  Ø 347.3916 mm (13.67681 inch)  0.1104 mm (0.00435 inch)  L1
267-7538  Ø 6.3500 mm (0.25000 inch)  Ø 124.299 mm (4.8937 inch)  Ø 124.2429 mm (4.89144 inch)  0.0561 mm (0.00221 inch)  L1
353-8391  Ø 4.7625 mm (0.18750 inch)  Ø 169.621 mm (6.6780 inch)  Ø 169.5505 mm (6.67520 inch)  0.0705 mm (0.00278 inch)  L1
382-0663  Ø 4.7625 mm (0.18750 inch)  Ø 169.621 mm (6.6780 inch)  Ø 169.5505 mm (6.67520 inch)  0.0705 mm (0.00278 inch)  L1
419-6350  Ø 4.7625 mm (0.18750 inch)  Ø 481.993 mm (18.9761 inch)  Ø 481.8563 mm (18.97068 inch)  0.1367 mm (0.00538 inch)  L1
434-3964  Ø 4.7625 mm (0.18750 inch)  Ø 169.621 mm (6.6780 inch)  Ø 169.5505 mm (6.67520 inch)  0.0705 mm (0.00278 inch)  L1
(1) Note: The most current part number is identified in bold font when multiple part numbers are in a cell.


Illustration 60g06321308
Typical example of taking a measurement between pins (B) of a reaction hub spline.
(B) Measurement Between Pins

Table 20
Internal Reaction Hub Spline Dimensions and Tolerances (1)  Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Assembly
Part
Number 
Part
Number 
Gage Pin Diameter  Original Specification
Measurement Between Gage Pins 
Reusability Specification
Measurement Between Gage Pins 
Maximum Difference
High and Low Measurement 
Measurement 
1C-7312
317-4581
463-9549 
1C-7101
317-4580
463-9547 
Ø 4.877 mm (0.1920 inch)  Ø 154.955 mm (6.1006 inch)  Ø 155.0332 mm (6.10366 inch)  0.0782 mm (0.00308 inch)  G1
1V-8610  1V-8608  Ø 6.3500 mm (0.25000 inch)  Ø 119.642 mm (4.7103 inch)  Ø 119.7143 mm (4.71315 inch)  0.0723 mm (0.00285 inch)  G1
2V-5711
9C-5852
174-7484 
2V-5712
9C-5851
174-7483 
Ø 6.3500 mm (0.25000 inch)  Ø 103.817 mm (4.0873 inch)  Ø 103.8876 mm (4.09005 inch)  0.0706 mm (0.00278 inch)  G1
—  4D-7614
6G-6874 
Ø 4.8768 mm (0.19200 inch)  Ø 193.050 mm (7.6004 inch)  Ø 193.1355 mm (7.60375 inch)  0.0855 mm (0.00337 inch)  G1
4V-0092  175-7527  Ø 6.3500 mm (0.25000 inch)  Ø 100.524 mm (3.9576 inch)  Ø 100.5942 mm (3.96039 inch)  0.0702 mm (0.00276 inch)  G1
4V-8535  162-9389  Ø 6.000 mm (0.2362 inch)  Ø 104.953 mm (4.1320 inch)  Ø 105.0215 mm (4.13469 inch)  0.0685 mm (0.00269 inch)  G1
4V-9820  4V-9818  2.3825 mm (0.09380 inch)  Ø 70.0910 mm (2.75948 inch)  Ø 70.1662 mm (2.76244 inch)  0.0752 mm (0.00296 inch)  G1
5K-4408
7K-7462 
5K-4271
7K-7463 
Ø 6.3500 mm (0.25000 inch)  Ø 119.6416 mm (4.71029 inch)  Ø 119.7139 mm (4.71314 inch)  0.0723 mm (0.00285 inch)  G1
—  5V-4702
5V-8974 6W-7272 
Ø 5.4864 mm (0.21600 inch)  Ø 242.014 mm (9.5281 inch)  Ø 242.1114 mm (9.53192 inch)  0.0974 mm (0.00383 inch)  G1
5V-9356
9C-9187 
5V-9355  Ø 4.0640 mm (0.16000 inch)  Ø 76.104 mm (2.9962 inch)  Ø 76.1714 mm (2.99887 inch)  0.0674 mm (0.00265 inch)  G1
6K-0461
7K-7432
9C-7457 
6K-0462
7K-7435
9C-2975 
Ø 6.3500 mm (0.25000 inch)  Ø 78.3082 mm (3.08299 inch)  Ø 78.3773 mm (3.08571 inch)  0.0691 mm (0.00272 inch)  G1
6S-7803  6S-3013  Ø 4.0640 mm (0.16000 inch)  Ø 76.1035 mm (2.99619 inch)  Ø 76.1708 mm (2.99885 inch)  0.0674 mm (0.00265 inch)  G1
—  6W-7351  Ø 5.4864 mm (0.21600 inch)  Ø 282.692 mm (11.1296 inch)  Ø 282.7974 mm (11.13374 inch)  0.1054 mm (0.00415 inch)  G1
7K-0454
7K-7431 
7K-0253
7K-7434 
Ø 4.0640 mm (0.16000 inch)  Ø 76.1035 mm (2.99619 inch)  Ø 76.1708 mm (2.99885 inch)  0.0674 mm (0.00265 inch)  G1
7K-7433  7K-7436  Ø 6.3500 mm (0.25000 inch)  Ø 100.523 mm (3.95759 inch)  Ø 100.5932 mm (3.96035 inch)  0.0702 mm (0.00276 inch)  G1
8K-0068  9K-0101  Ø 4.877 mm (0.1920 inch)  Ø 154.955 mm (6.1006 inch)  Ø 155.0332 mm (6.10366 inch)  0.0782 mm (0.00308 inch)  G1
8V-6382  8V-6387  Ø 6.3500 mm (0.25000 inch)  Ø 119.642 mm (4.7103 inch)  Ø 119.7143 mm (4.71315 inch)  Ø 0.0723 mm (0.00285 inch)  G1
9C-4811
9K-2300 
9C-4812
9K-1852 
Ø 6.3500 mm (0.25000 inch)  Ø 100.523 mm (3.9576 inch)  Ø 100.5932 mm (3.96035 inch)  0.0702 mm (0.00276 inch)  G1
9U-0975  9U-0976  Ø 6.3500 mm (0.25000 inch)  Ø 119.642 mm (4.7103 inch)  Ø 119.7143 mm (4.71315 inch)  0.0723 mm (0.00285 inch)  G1
—  9U-3391  Ø 5.4864 mm (0.2160 inch)  Ø 282.692 mm (11.1296 inch)  Ø 282.7974 mm (11.13374 inch)  0.1054 mm (0.00415 inch)  G1
110-0551  105-8714  Ø 5.000 mm (0.19685 inch)  Ø 154.572 mm (6.08550 inch)  Ø 154.6507 mm (6.08860 inch)  0.0787 mm (0.00310 inch)  G1
110-0552  105-8715  Ø 4.877 mm (0.1920 inch)  Ø 154.955 mm (6.1006 inch)  Ø 155.0332 mm (6.10366 inch)  0.0782 mm (0.00308 inch)  G1
—  107-0691  Ø 5.4864 mm (0.21600 inch)  Ø 282.692 mm (11.1296 inch)  Ø 282.7974 mm (11.13374 inch)  0.1054 mm (0.00415 inch)  G1
118-9399
162-0193 
118-9400
162-0194 
Ø 4.877 mm (0.1920 inch)  Ø 154.955 mm (6.1006 inch)  Ø 155.0332 mm (6.10366 inch)  0.0782 mm (0.00308 inch)  G1
137-8846  137-8847  Ø 4.877 mm (0.1920 inch)  Ø 175.293 mm (6.9013 inch)  Ø 175.3751 mm (6.90452 inch)  0.0821 mm (0.00323 inch)  G1
162-0268  162-0269  Ø 4.877 mm (0.1920 inch)  Ø 154.955 mm (6.1006 inch)  Ø 155.0332 mm (6.10366 inch)  0.0782 mm (0.00308 inch)  G1
—  244-1096  Ø 5.001 mm (0.1969 inch)  Ø 335.021 mm (13.1898 inch)  Ø 335.1356 mm (13.19429 inch)  0.1146 mm (0.00451 inch)  G1
317-1300  317-1299  Ø 6.0000 mm (0.23622 inch)  Ø 104.953 mm (4.13200 inch)  Ø 105.0215 mm (4.13469 inch)  0.0685 mm (0.00269 inch)  G1
(1) Note: The most current part number is identified in bold font when multiple part numbers are in a cell.


Illustration 61g06369821
Typical example of taking a measurement between pins (B) of a reaction hub spline.
Note: Typical example of a reaction hubwithout bearing journal.
(B) Measurement Between Pins

Table 21
Internal Reaction Hub Spline Dimensions and Tolerances (1)  Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Part Number  Gage Pin Diameter  Original Specification
Measurement Between Gage Pins 
Reusability Specification
Measurement Between Gage Pins 
Maximum Difference
High and Low Measurement 
Measurement 
1V-6273  Ø 5.4864 mm (0.21600 inch)  Ø 242.0137 mm (9.52808 inch)  Ø 242.1111 mm (9.53191 inch)  0.0974 mm (0.00383 inch)  G1
5D-5452
8D-2091 
Ø 4.877 mm (0.1920 inch)  Ø 154.955 mm (6.1006 inch)  Ø 155.0317 mm (6.10360 inch)  0.07649 mm (0.00301 inch)  G1
137-8628  Ø 5.4864 mm (0.21600 inch)  Ø 465.701 mm (18.3347 inch)  Ø 465.8431 mm (18.34024 inch)  0.1421 mm (0.00559 inch)  G1
419-6353  Ø 5.0000 mm (0.19685 inch)  Ø 467.1800 mm (18.3929 inch)  Ø 467.3218 mm (18.39846 inch)  0.1418 mm (0.00558 inch)  G1
(1) Note: The most current part number is identified in bold font when multiple part numbers are in a cell.


Illustration 62g06321309
Typical example of taking a Measurement Over Pins (MOP) (C) of a reaction hub spline.
(C) Measurement Over Pins (MOP)

Table 22
External Reaction Hub Spline Dimensions and Tolerances (1)  Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Assembly
Part
Number 
Part
Number 
Gage Pin Diameter  Original Specification
Measurement Over Gage Pins 
Reusability Specification
Measurement Over Gage Pins 
Maximum Difference
High and Low Measurement 
Measurement 
—  1C-7101
317-4580
463-9547 
Ø 9.7536 mm (0.3840 inch)  Ø 448.719 mm (17.6661 inch)  Ø 448.5663 mm (17.66006 inch)  0.1527 mm (0.00601 inch)  L1
1V-8610  1V-8608  Ø 9.525 mm (0.3750 inch)  Ø 405.376 mm (15.9597 inch)  Ø 405.2098 mm (15.95311 inch)  0.1662 mm (0.00654 inch)  L1
2V-5711
9C-5852
174-7484 
2V-5712
9C-5851
174-7483 
Ø 7.9375 mm (0.3125 inch)  Ø 359.621 mm (14.1583 inch)  Ø 359.4610 mm (14.15198 inch)  0.1600 mm (0.00630 inch)  L1
—  4D-7614
6G-6874 
Ø 10.9728 mm (0.4320 inch)  Ø 665.594 mm (26.2044 inch)  Ø 665.3563 mm (26.19508 inch)  0.2377 mm (0.00936 inch)  L1
4V-0092  175-7527  Ø 7.9375 mm (0.3125 inch)  Ø 307.848 mm (12.1200 inch)  Ø 307.7044 mm (12.11432 inch)  0.1437 mm (0.00566 inch)  L1
4V-8535  162-9389  Ø 9.5250 mm (0.37500 inch)  Ø 348.651 mm (13.7264 inch)  Ø 348.5246 mm (13.72141 inch)  0.1264 mm (0.00498 inch)  L1
4V-9820  4V-9818  Ø 6.3500 mm (0.25000 inch)  Ø 273.566 mm (10.7703 inch)  Ø 273.4679 mm (10.76643 inch)  0.0981 mm (0.00386 inch)  L1
5K-4408
7K-7462 
5K-4271
7K-7463 
Ø 9.5250 mm (0.37500 inch)  Ø 407.3931 mm (16.0391 inch)  Ø 407.2342 mm (16.03281 inch)  0.1589 mm (0.00626 inch)  L1
—  5V-4702
5V-8974
6W-7272 
Ø 14.2875 mm (0.56250 inch)  Ø 729.008 mm (28.7010 inch)  Ø 728.8048 mm (28.69304 inch)  0.2032 mm (0.00800 inch)  L1
5V-9356
9C-9187 
5V-9355  Ø 7.9375 mm (0.31250 inch)  Ø 278.488 mm (10.9641 inch)  Ø 278.3904 mm (10.96023 inch)  0.0976 mm (0.00384 inch)  L1
6K-0461
7K-7432
9C-7457 
6K-0462
7K-7435
9C-2975 
Ø 7.3152 mm (0.2880 inch)  Ø 305.7754 mm (12.03838 inch)  Ø 305.6725 mm (12.03433 inch)  0.1029 mm (0.00405 inch)  L1
6S-7803  6S-3013  Ø 6.3500 mm (0.25000 inch)  Ø 241.3178 mm (9.5007 inch)  Ø 241.2215 mm (9.49689 inch)  0.0963 mm (0.00379 inch)  L1
—  6W-7351  Ø 14.2875 mm (0.56250 inch)  Ø 729.008 mm (28.7010 inch)  Ø 728.8048 mm (28.69304 inch)  0.2032 mm (0.00800 inch)  L1
7K-0454
7K-7431 
7K-0253
7K-7434 
Ø 6.3500 mm (0.25000 inch)  Ø 273.5656 mm (10.77028 inch)  Ø 273.4870 mm (10.76718 inch)  0.0786 mm (0.00309 inch)  L1
7K-7433  7K-7436  Ø 8.7782 mm (0.34560 inch)  Ø 346.9538 mm (13.65957 inch)  Ø 346.8259 mm (13.65453 inch)  0.1280 mm (0.00504 inch)  L1
8K-0068  9K-0101  Ø 11.1125 mm (0.43750 inch)  Ø 523.145 mm (20.5962 inch)  Ø 522.9490 mm (20.58850 inch)  0.1960 mm (0.00772 inch)  L1
8V-6382  8V-6387  Ø 9.5250 mm (0.37500 inch)  Ø 405.376 mm (15.9597 inch)  Ø 405.2098 mm (15.95311 inch)  0.1662 mm (0.00654 inch)  L1
9C-4811
9K-2300 
9C-4812
9K-1852 
Ø 9.5250 mm (0.37500 inch)  Ø 348.6506 mm (13.7264 inch)  Ø 348.5242 mm (13.72140 inch)  0.1264 mm (0.00498 inch)  L1
9U-0975  9U-0976  Ø 10.0000 mm (0.39370 inch)  Ø 405.883 mm (15.9796 inch)  Ø 405.7457 mm (15.97421 inch)  0.1373 mm (0.00541 inch)  L1
—  9U-3391  Ø 20.0000 mm (0.78740 inch)  Ø 619.136 mm (24.3754 inch)  Ø 618.9847 mm (24.36943 inch)  0.1514 mm (0.00596 inch)  L1
110-0551  105-8714  Ø 16.0000 mm (0.62992 inch)  Ø 425.213 mm (16.74064 inch)  Ø 425.0991 mm (16.73615 inch)  0.1139 mm (0.00448 inch)  L1
110-0552  105-8715  Ø 14.0000 mm (0.55118 inch)  Ø 505.564 mm (19.9041 inch)  Ø 505.4220 mm (19.89846 inch)  0.1420 mm (0.00559 inch)  L1
—  107-0691  Ø 25.000 mm (0.9843 inch)  Ø 892.617 mm (35.1423 inch)  Ø 892.4228 mm (35.13468 inch)  0.1942 mm (0.00765 inch)  L1
118-9399
162-0193 
118-9400
162-0194 
Ø 12.0000 mm (0.47244 inch)  Ø 524.943 mm (20.6670 inch)  Ø 524.8087 mm (20.66172 inch)  0.1343 mm (0.00529 inch)  L1
137-8846  137-8847  12.000 mm (0.4724 inch)  Ø 591.324 mm (23.28043 inch)  Ø 591.1219 mm (23.27247 inch)  0.2021 mm (0.00796 inch)  L1
162-0268  162-0269  Ø 12.0000 mm (0.47244 inch)  Ø 524.943 mm (20.66701 inch)  Ø 524.8087 mm (20.66172 inch)  0.1343 mm (0.00529 inch)  L1
—  244-1096  Ø 25.000 mm (0.9843 inch)  Ø 764.435 mm (30.0958 inch)  Ø 764.2747 mm (30.08949 inch)  0.1603 mm (0.00631 inch)  L1
317-1300  317-1299  Ø 7.9375 mm (0.31250 inch)  Ø 359.621 mm (14.1583 inch)  Ø 359.4610 mm (14.15198 inch)  0.1600 mm (0.00630 inch)  L1
(1) Note: The most current part number is identified in bold font when multiple part numbers are in a cell.


Illustration 63g06369827
Typical example of taking a Measurement Over Pins (MOP) (C) of a reaction hub spline.
Note: Typical example of a reaction hub without bearing journal.
(C) Measurement Between Pins

Table 23
External Reaction Hub Spline Dimensions and Tolerances (1)  Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Part Number  Gage Pin Diameter  Original Specification
Measurement Over Gage Pins 
Reusability Specification
Measurement Over Gage Pins 
Maximum Difference
High and Low Measurement 
Measurement 
1V-6273  Ø 12.7000 mm (0.50000 inch)  Ø 725.2513 mm (28.5532 inch)  Ø 725.0331 mm (28.54455 inch)  0.2182 mm (0.00859 inch)  L1
5D-5452
8D-2091 
Ø 8.7782 mm (0.3456 inch)  Ø 575.1043 mm (22.6419 inch)  Ø 575.0208 mm (22.63857 inch)  0.0835 mm (0.00329 inch)  L1
137-8628  Ø 15.9995 mm (0.62990 inch)  Ø 721.563 mm (28.4079 inch)  Ø 721.3841 mm (28.40089 inch)  0.1789 mm (0.00704 inch)  L1
419-6353  Ø 20.000 mm (0.7874 inch)
(Flattened) 
Ø 919.523 mm (36.2016 inch)  Ø 919.3459 mm (36.19465 inch)  0.1771 mm (0.00697 inch)  L1
(1) Note: The most current part number is identified in bold font when multiple part numbers are in a cell.

Wheel Bearing Bore and Bearing Journal Reusability



Illustration 64g06321257
Typical example of outboard bearing (8) placement variations.
Note: The outboard bearing placement is on the spindle of the final drive wheel group on left versus the hub on the right.
(1) Spindle
(3) Hub
(8) Outboard Bearing

The placement of the outboard wheel bearings can be on the hub or spindle. Inspect the spindle and hub bearing journals and the bearing bores of the wheel for wear at each rebuild.


NOTICE

If the bearing journal or bore has significant wear, the bearings will fit loosely and will cause premature failure of the components.


Bearing Journal and Bore Inspections

  1. Start with a visual inspect of all bearing journal and bores. Bearing bores and journals can be inspected with the naked eye. To provide the best results, a magnifying glass and a strong light source such as sunlight are recommended. Check each component for cracks, bruising, scratching, or spalling. It can also be difficult to distinguish between small scratches and small cracks. In these cases, perform Wet Magnetic Particle Testing (MPT) or Liquid Penetrant Testing (PT), refer to the "Crack Detection Methods" section.

  2. After passing visual/ Non-Destructive testing, then measure the bearing journal and bores to ensure that the component meets the criteria for reusability in Table 24 through Table 26.

  3. If any defects are present, DO NOT USE PART until the component is salvaged. The component can be used after performing the applicable salvage procedure.

Spindle and Hub Bearing Journal Wear Limits

The outboard bearings are positioned on the spindle in two different ways. The outboard bearings are positioned on the spindle, or the hub which is then mounted to the spindle. If the bearing is mounted to the hub, the spindle should still be checked for wear in locations where contact locations with the hub. If the spindle has wear characteristics, thermal spray may be used to salvage the spindle. Refer to the "References" section for applicable information regarding thermal spray. Refer to Table 24 for part number-specific outer diameter dimensions of spindles.

Spindle Bearing Journal Tolerances

Note: Refer to the "References" section for applicable information regarding thermal spray.



Illustration 65g06320902
Typical example of a spindle.
(A) Bearing Journal
(B) Spindle Journal

Table 24
Spindle Outside Diameter Tolerance (1)  Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Part Number  Tolerance
(A) 
Tolerance
(B) 
Measurement  Measurement  Measurement 
1V-1317  Ø 165.0822 ± 0.0127 mm (6.4993 ± 0.0005 inch)  Ø 120.6373 ± 0.0127 mm (4.7495 ± 0.0005 inch)  A1 A2 A3
1V-1379
4K-6388 
Ø 117.462 ± 0.013 mm (4.6245 ± 0.0005 inch)  Ø 104.762 ± 0.013 mm (4.1245 ± 0.0005 inch)  A1 A2 A3
1V-1392
2V-5132
7K-1138 
Ø 117.457 ± 0.013 mm (4.6243 ± 0.0005 inch)  Ø 104.762 ± 0.013 mm (4.1245 ± 0.0005 inch)  A1 A2 A3
1V-1554
6K-8848
7K-7468 
Ø 95.232 ± 0.013 mm (3.7493 ± 0.0005 inch)  Ø 76.060 ± 0.013 mm (2.9945 ± 0.0005 inch)  A1 A2 A3
1V-4718
6K-5836
7K-7459 
Ø 95.232 ± 0.013 mm (3.7493 ± 0.0005 inch)  Ø 82.537 ± 0.013 mm (3.2495 ± 0.0005 inch)  A1 A2 A3
1V-4975  Ø 189.962 ± 0.025 mm (7.4788 ± 0.0010 inch)  Ø 155.423 ± 0.025 mm (6.1190 ± 0.001 inch)  A1 A2 A3
3Q-6136  Ø 165.085 ± 0.015 mm (6.4994 ± 0.0006 inch)  Ø 123.00 ± 0.013 mm (4.8425 ± 0.0005 inch)  A1 A2 A3
3V-2478
5V-7635
6W-7271 
Ø 304.770 ± 0.025 mm (11.9988 ± 0.0010 inch)  Ø 260.320 ± 0.025 mm (10.2488 ± 0.0010 inch)  A1 A2 A3
3Y-4071  Ø 95.235 ± 0.015 mm (3.7494 ± 0.0006 inch) Ø 95.232 ± 0.013 mm (3.7493 ± 0.0005 inch)  Ø 82.537 ± 0.013 mm (3.2495 ± 0.0005 inch)  A1 A2 A3
3Y-5779  Ø 117.460 ± 0.015 mm (4.62440 ± 0.0006 inch)  Ø 104.762 ± 0.013 mm (4.1245 ± 0.0005 inch)  A1 A2 A3
3Y-7724
4V-9580
9C-2312 
Ø 95.235 ± 0.015 mm (3.7494 ± 0.0006 inch)  Ø 76.060 ± 0.013 mm (2.9945 ± 0.0005 inch)  A1 A2 A3
4V-5213
9C-0616 
Ø 136.507 ± 0.013 mm (5.3743 ± 0.0005 inch)  Ø 106.365 ± 0.013 mm (4.1876 ± 0.0005 inch)  A1 A2 A3
4V-9822
4Y-0984
9C-2313 
Ø 85.710 ± 0.015 mm (3.3744 ± 0.0006 inch)  Ø 69.77 ± 0.10 mm (2.7468 ± 0.004 inch)  A1 A2 A3
5K-1651  Ø 117.457 ± 0.013 mm (4.6243 ± 0.0005 inch)  Ø 104.762 ± 0.013 mm (4.1245 ± 0.0005 inch)  A1 A2 A3
5V-4062
9C-0615
138-4805 
Ø 136.576 ± 0.015 mm (5.3770 ± 0.0006 inch)  Ø 106.365 ± 0.013 mm (4.1876 ± 0.0005 inch)  A1 A2 A3
5V-5692  Ø 117.460 ± 0.015 mm (4.62440 ± 0.0006 inch)  Ø 104.762 ± 0.013 mm (4.1245 ± 0.0005 inch)  A1 A2 A3
6S-3012  Ø 95.235 ± 0.015 mm (3.7494 ± 0.0006 inch)  Ø 76.060 ± 0.013 mm (2.9945 ± 0.0005 inch)  A1 A2 A3
6W-7349  Ø 304.770 ± 0.025 mm (11.9988 ± 0.0010 inch)  Ø 300.008 ± 0.025 mm (11.8113 ± 0.001 inch)  A1 A2 A3
7K-3737  Ø 192.0621 ± 0.025 mm (7.5615 ± 0.0010 inch)  Ø 165.07 ± 0.03 mm (6.499 ± 0.001 inch)  A1 A2 A3
7U-0774  Ø 152.4 - 0.005/ - 0.030 mm (6.00 - 0.0002/ - 0.0012 inch)  Ø 123.0 ± 0.013 mm (4.84 ± 0.0005 inch)  A1 A2 A3
7V-8640
9C-2310 
Ø 136.510 ± 0.015 mm (5.3744 ± 0.0006 inch)  Ø 106.365 ± 0.013 mm (4.1876 ± 0.0005 inch)  A1 A2 A3
8K-6574  Ø 234.92 ± 0.03 mm (9.249 ± 0.001 inch)  Ø 203.17 ± 0.03 mm (7.999 ± 0.001 inch)  A1 A2 A3
8K-6929  Ø 189.941 ± 0.025 mm (7.4780 ± 0.0010 inch)  Ø 169.944 ± 0.025 mm (6.6907 ± 0.0010 inch)  A1 A2 A3
8S-4173  Ø 234.9246 ± 0.025 mm (9.249 ± 0.0010 inch)  Ø 203.175 ± 0.03 mm (7.999 ± 0.001 inch)  A1 A2 A3
8V-6388  Ø 165.085 ± 0.015 mm (6.4994 ± 0.0006 inch)  Ø 123.000 ± 0.013 mm (4.8425 ± 0.0005 inch)  A1 A2 A3
9C-1639
138-4804 
Ø 120.025 ± 0.015 mm (4.7254 ± 0.0006 inch)  Ø 104.762 ± 0.013 mm (4.1245 ± 0.0005 inch)  A1 A2 A3
9K-4966  Ø 123.8123 ± 0.0127 mm (4.8745 ± 0.0005 inch)  Ø 104.7623 ± 0.013 mm (4.1245 ± 0.0005 inch)  A1 A2 A3
9Q-5379
388-4764 
190.075 ± 0.025 mm (7.48325 ± 0.0010 inch)  Ø 155.423 ± 0.025 mm (6.1190 ± 0.0010 inch)  A1 A2 A3
9V-1330  Ø 189.965 ± 0.025 mm (7.4789 ± 0.0010 inch)  Ø 169.965 ± 0.025 mm (6.6915 ± 0.0010 inch)  A1 A2 A3
116-6260  Ø 330.3 ± 0.025 mm (13.00 ± 0.0010 inch)  Ø 285.50 ± 0.025 mm (11.2401 ± 0.0010 inch)  A1 A2 A3
131-1296  Ø 330.3 ± 0.025 mm (13.00 ± 0.0010 inch)  Ø 285.50 ± 0.025 mm (11.2401 ± 0.0010 inch)  A1 A2 A3
135-7742
417-0990 
Ø 174.7 ± 0.025 mm (6.88 ± 0.0010 inch)  Ø 155.423 ± 0.025 mm (6.1190 ± 0.0010 inch)  A1 A2 A3
137-8627  Ø 488.92 ± 0.025 mm (19.2488 ± 0.0010 inch)  Ø 479.395 ± 0.025 mm (18.8738 ± 0.0010 inch)  A1 A2 A3
142-7562
197-8287 
Ø 189.962 ± 0.025 mm (7.4788 ± 0.0010 inch)  Ø 155.423 ± 0.025 mm (6.1190 ± 0.0010 inch)  A1 A2 A3
147-6457  Ø 209.65 ± 0.025 mm (8.2539 ± 0.0010 inch)  Ø 175.736 ± 0.025 mm (6.9187 ± 0.0010 inch)  A1 A2 A3
151-3036
489-3400 
Ø 209.65 ± 0.025 mm (8.2539 ± 0.0010 inch)  Ø 175.736 ± 0.025 mm (6.9187 ± 0.0010 inch)  A1 A2 A3
180-0017
392-7976 
Ø 171.525 ± 0.025 mm (6.7529 ± 0.0010 inch)  Ø 155.423 ± 0.025 mm (6.1190 ± 0.0010 inch)  A1 A2 A3
205-0747
482-1805 
Ø 174.7 ± 0.025 mm (6.88 ± 0.0010 inch)  Ø 155.423 ± 0.025 mm (6.1190 ± 0.0010 inch)  A1 A2 A3
244-1095  Ø 355.7 ± 0.025 mm (14.00 ± 0.0010 inch)  Ø 335.912 ± 0.025 mm (13.2249 ± 0.0010 inch)  A1 A2 A3
267-7538  Ø 136.507 ± 0.013 mm (5.3743 ± 0.0005 inch)  Ø 106.365 ± 0.013 mm (4.1876 ± 0.0005 inch)  A1 A2 A3
353-8391  Ø 174.7 ± 0.025 mm (6.88 ± 0.0010 inch)  Ø 155.423 ± 0.025 mm (6.1190 ± 0.001 inch)  A1 A2 A3
382-0663  Ø 174.7 ± 0.025 mm (6.88 ± 0.0010 inch)  Ø 155.423 ± 0.025 mm (6.1190 ± 0.001 inch)  A1 A2 A3
419-6350  Ø 488.92 ± 0.025 mm (19.249 ± 0.0010 inch)  Ø 468.5 ± 0.025 mm (18.44 ± 0.0010 inch)  A1 A2 A3
434-3964  Ø 174.7 ± 0.025 mm (6.88 ± 0.0010 inch)  Ø 155.423 ± 0.025 mm (6.1190 ± 0.0010 inch)  A1 A2 A3
(1) Note: The most current part number is identified in bold font when multiple part numbers are in a cell.

Reaction Hub Bearing Journal Tolerances

Note: Refer to the "References" section for applicable information regarding thermal spray.



Illustration 66g06320923
Typical example of a reaction hub.
(C) Bearing Journal

The reaction hub shown in Illustration 66 is designed with a bearing journal (C). When inspecting this design, the hub and the spindle should be inspected and measured. The hub must meet specifications for new parts and the hub must have no abrasive wear or adhesive wear. If the reaction hub does not meet the required conditions, the hub can be reworked by use of thermal spray and machining. Refer to Table 25 for tolerances of reaction hub bearing journal.

Table 25
Reaction Hub Bearing Journal Tolerances (1)  Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Assembly
Part
Number 
Part
Number 
Tolerance
(C) 
Measurement  Measurement  Measurement 
1C-7312
317-4581
463-9549 
1C-7101
317-4580
463-9547 
Ø 203.3 ± 0.025 mm (8.00 ± 0.0010 inch)  C1 C2 C3
1V-8610  1V-8608  Ø 165.085 ± 0.015 mm (6.4994 ± 0.0006 inch)  C1 C2 C3
2V-5711
9C-5852
174-7484 
2V-5712
9C-5851
174-7483 
Ø 146.035 ± 0.015 mm (5.7494 ± 0.0006 inch)  C1 C2 C3
—  4D-7614
6G-6874 
Ø 254.00 ± 3.048 mm (10.00 ± 0.12 inch)  C1 C2 C3
4V-0092  175-7527  Ø 146.1 ± 0.015 mm (5.75 ± 0.0006 inch)  C1 C2 C3
4V-8535  162-9389  Ø 146.1 ± 0.015 mm (5.75 ± 0.0006 inch)  C1 C2 C3
4V-9820  4V-9818  Ø 96.823 ± 0.015 mm (3.8119 ± 0.0006 inch)  C1 C2 C3
5K-4408 7K-7462  5K-4271
7K-7463 
Ø 165.082 ± 0.013 mm (6.4993 ± 0.0005 inch)  C1 C2 C3
—  5V-4702
5V-8974
6W-7272 
Ø 295.00 ± 0.025 mm (11.6142 ± 0.001 inch)  C1 C2 C3
5V-9356
9C-9187 
5V-9355  Ø 107.937 ± 0.013 mm (4.2495 ± 0.0005 inch)  C1 C2 C3
6K-0461
7K-7432
9C-7457 
6K-0462
7K-7435
9C-2975 
Ø 117.462 ± 0.013 mm (4.6245 ± 0.0005 inch)  C1 C2 C3
6S-7803  6S-3013  Ø 107.937 ± 0.013 mm (4.2495 ± 0.0005 inch)  C1 C2 C3
7K-0454
7K-7431 
7K-0253
7K-7434 
Ø 107.937 ± 0.013 mm (4.2495 ± 0.0005 inch)  C1 C2 C3
7K-7433  7K-7436  Ø 146.037 ± 0.013 mm (5.7495 ± 0.0005 inch)  C1 C2 C3
7K-7462  7K-7463  Ø 165.082 ± 0.013 mm (6.4993 ± 0.0005 inch)  C1 C2 C3
8K-0068  9K-0101  Ø 206.375 ± 0.025 mm (8.125 ± 0.0010 inch)  C1 C2 C3
8V-6382  8V-6387  Ø 165.085 ± 0.015 mm (6.4994 ± 0.0006 inch)  C1 C2 C3
9C-4811
9K-2300 
9C-4812
9K-1852 
Ø 146.037 ± 0.013 mm (5.7495 ± 0.0005 inch)  C1 C2 C3
9U-0975  9U-0976  Ø 165.085 ± 0.015 mm (6.4994 ± 0.0006 inch)  C1 C2 C3
—  9U-3391  Ø 355.57 ± 0.25 mm (13.9988 ± 0.01 inch)  C1 C2 C3
110-0551  105-8714  Ø 206.375 ± 0.015 mm (8.125 ± 0.0006 inch)  C1 C2 C3
110-0552  105-8715  Ø 206.375 ± 0.015 mm (8.125 ± 0.0006 inch)  C1 C2 C3
—  107-0691  Ø 385.862 ± 0.025 mm (15.1914 ± 0.001 inch)  C1 C2 C3
118-9399
162-0193 
118-9400
162-0194 
Ø 206.375 ± 0.025 mm (8.125 ± 0.0010 inch)  C1 C2 C3
137-8846  137-8847  Ø 237.43 ± 0.025 mm (9.3476 ± 0.001 inch)  C1 C2 C3
162-0268  162-0269  Ø 206.375 ± 0.025 mm (8.125 ± 0.0010 inch)  C1 C2 C3
—  244-1096  Ø 457.3 ± 0.025 mm (18.00 ± 0.0010 inch)  C1 C2 C3
317-1300  317-1299  170.05 ± 0.015 mm (6.695 ± 0.0006 inch)  C1 C2 C3
(1) Note: The most current part number is identified in bold font when multiple part numbers are in a cell.

Wheel Bearing Bore Tolerances

Determine the maximum allowable wear of the bore of the bearing cup of the wheel assembly with the following procedure:

  1. Measure the Inside Diameter (ID) of the bearing bores of the wheel. Refer to the "Measurement Techniques" section.

  2. Refer to Table 26 to verify that the measurement is within the specifications.

  3. If there is significant wear or the bore is not within the specifications, the wheel must be replaced or salvaged. To salvage the bore of the wheel, refer to the "References" section for applicable thermal spray options.


Illustration 67g06321589
Typical example of a wheel.
(D) Inboard Bearing Bore
(E) Outboard Bearing Bore

Table 26
Wheel Bearing Bore Tolerances (1)  Record Actual Dimensions
Refer to the "Measurement Techniques" section for the proper techniques and number of measurements to be taken. 
Assembly
Part
Number 
Part
Number 
Inboard
Tolerance
(D) 
Outboard
Tolerance
(E) 
Measurement  Measurement  Measurement 
1V-0633  1V-0634  Ø 180.92 ± 0.03 mm (7.123 ± 0.001 inch)  Ø 193.62 ± 0.03 mm (7.623 ± 0.001 inch)  A1 A2 A3
1V-1686
3V-4058 
1V-1687  Ø 180.9115 ± 0.0356 mm (7.1225 ± 0.0014 inch)  Ø 193.6115 ± 0.0355 mm (7.6225 ± 0.0014 inch)  A1 A2 A3
1V-1996
1V-3254 
1V-1997  Ø 152.3365 ± 0.0356 mm (5.9975 ± 0.0014 inch)  Ø 158.687 ± 0.035 mm (6.2475 ± 0.0014 inch)  A1 A2 A3
1V-3520  1V-3521  Ø 152.3365 ± 0.036 mm (5.9975 ± 0.0014 inch)  Ø 180.912 ± 0.036 mm (7.1225 ± 0.0014 inch)  A1 A2 A3
1V-5804  1V-4976  Ø 259.895 ± 0.038 mm (10.2321 ± 0.0015 inch)  Ø 282.512 ± 0.038 mm (11.1225 ± 0.0015 inch)  A1 A2 A3
1V-6518  1V-6519  Ø 259.9131 ± 0.0381 mm (10.2328 ± 0.0015 inch)  Ø 239.9182 ± 0.038 mm (9.4456 ± 0.0015 inch)  A1 A2 A3
—  2U-6613  Ø 253.93 ± 0.04 mm (9.9972 ± 0.0016 inch)  Ø 225.357 ± 0.040 mm (8.8723 ± 0.0016 inch)  A1 A2 A3
3S-9040  3S-9044  Ø 266.6492 ± 0.0381 mm (10.4980 ± 0.0015 inch)  Ø 247.5992 ± 0.0381 mm (9.7480 ± 0.0015 inch)  A1 A2 A3
3V-2672  4V-1403
9V-9860 
Ø 406.332 + 0.040 - 0.080 mm (15.9973 + 0.0016 - 0.0032 inch)  Ø 422.202 + 0.045 - 0.090 mm (16.62209 + 0.0018 - 0.0035 inch)  A1 A2 A3
3V-3626
117-0317 
2V-0051  Ø 225.357 + 0.040 - 0.080 mm (8.8723 + 0.0016 - 0.0032 inch)  Ø 225.357 + 0.040 - 0.080 mm (8.8723 + 0.0016 - 0.0032 inch)  A1 A2 A3
3V-4143  1V-0189  Ø 180.9115 ± 0.0356 mm (7.1225 ± 0.0014 inch)  Ø 193.6115 ± 0.0355 mm (7.6225 ± 0.0014 inch)  A1 A2 A3
3V-4266
4K-6765
8K-6953 
8K-6951
7K-8818 
Ø 180.912 ± 0.035 mm (7.1225 ± 0.0014 inch)  Ø 193.612 ± 0.035 mm (7.6225 ± 0.0014 inch)  A1 A2 A3
3Y-4632  3Y-0509  Ø 180.924 ± 0.025 mm (7.123 ± 0.001 inch)  Ø 193.624 ± 0.025 mm (7.623 ± 0.001 inch)  A1 A2 A3
3Y-8283  3Y-8281  Ø 152.337 ± 0.035 mm (5.9975 ± 0.0014 inch)  Ø 158.674 ± 0.025 mm (6.2470 ± 0.001 inch)  A1 A2 A3
—  4S-6855  Ø 266.6492 ± 0.0381 mm (10.4980 ± 0.0015 inch)  Ø 247.5992 ± 0.0381 mm (9.7480 ± 0.0015 inch)  A1 A2 A3
—  4V-4574  Ø 152.3365 ± 0.0356 mm (5.9975 ± 0.0014 inch)  Ø 180.9242 ± 0.0254 mm (7.123 ± 0.001 inch)  A1 A2 A3
—  4V-4591  Ø 152.3365 ± 0.0356 mm (5.9975 ± 0.0014 inch)  Ø 158.687 ± 0.035 mm (6.2475 ± 0.0014 inch)  A1 A2 A3
—  4V-7602  Ø 180.912 ± 0.035 mm (7.1225 ± 0.0014 inch)  Ø 193.612 ± 0.035 mm (7.6225 ± 0.0014 inch)  A1 A2 A3
4V-8532  5V-4061  Ø 190.437 ± 0.035 mm (7.4975 ± 0.0014 inch)  Ø 193.612 ± 0.035 mm (7.6225 ± 0.0014 inch)  A1 A2 A3
—  4V-9819  Ø 136.465 ± 0.035 mm (5.3726 ± 0.0014 inch)  Ø 148.370 ± 0.035 mm (5.8413 ± 0.0014 inch)  A1 A2 A3
5C-1498  5C-1491  Ø 152.349 ± 0.025 mm (5.998 ± 0.001 inch)  Ø 158.674 ± 0.025 mm (6.2470 ± 0.001 inch)  A1 A2 A3
—  5C-6319  Ø 180.924 ± 0.025 mm (7.1230 ± 0.0010 inch)  Ø 193.624 ± 0.025 mm (7.6230 ± 0.0010 inch)  A1 A2 A3
5K-1217  5K-1076  Ø 180.9115 ± 0.0356 mm (7.1225 ± 0.0014 inch)  Ø 193.6115 ± 0.0355 mm (7.6225 ± 0.0014 inch)  A1 A2 A3
5K-4703
6K-8935
7K-3423 
5K-4497
7K-9288 
Ø 225.356 ± 0.041 mm (8.8723 ± 0.0016 inch)  Ø 225.356 ± 0.041 mm (8.8723 ± 0.0016 inch)  A1 A2 A3
—  5V-9357  Ø 149.912 ± 0.035 mm (5.9020 ± 0.0014 inch)  Ø 158.687 ± 0.035 mm (6.2475 ± 0.0014 inch)  A1 A2 A3
6K-5832
8K-8269 
6K-5840
8K-8242 
Ø 152.35 ± 0.03 mm (5.998 ± 0.001 inch)  Ø 180.92 ± 0.03 mm (7.123 ± 0.001 inch)  A1 A2 A3
6S-3020  6S-3010  Ø 149.94 ± 0.03 mm (5.903 ± 0.001 inch)  Ø 158.70 ± 0.03 mm (6.248 ± 0.001 inch)  A1 A2 A3
—  7V-0592  Ø 259.892 + 0.040 - 0.080 mm (10.2320 + 0.0016 - 0.0032 inch)  Ø 239.907 + 0.035 - 0.070 mm (9.4451 + 0.0014 - 0.0028 inch)  A1 A2 A3
8K-6846  8K-6295  Ø 193.62 ± 0.03 mm (7.623 ± 0.001 inch)  Ø 180.98 ± 0.03 mm (7.125 ± 0.001 inch)  A1 A2 A3
8K-6556  8K-6559  Ø 314.2742 ± 0.0381 mm (12.3730 ± 0.0015 inch)  Ø 282.5242 ± 0.0381 mm (11.1230 ± 0.0015 inch)  A1 A2 A3
8K-8143  8K-8116  Ø 266.6492 ± 0.0381 mm (10.4980 ± 0.0015 inch)  Ø 247.5992 ± 0.0381 mm (9.7480 ± 0.0015 inch)  A1 A2 A3
—  8K-8796  Ø 266.6492 ± 0.0381 mm (10.4980 ± 0.0015 inch)  Ø 247.5992 ± 0.0381 mm (9.7480 ± 0.0015 inch)  A1 A2 A3
—  8R-4087  Ø 190.437 ± 0.035 mm (7.4975 ± 0.0014 inch)  Ø 193.612 ± 0.035 mm (7.6225 ± 0.0014 inch)  A1 A2 A3
8V-6392
— 
8V-6391
103-5961 
Ø 190.436 ± 0.035 mm (7.4975 ± 0.0014 inch)  Ø 193.611 ± 0.035 mm (7.6225 ± 0.0014 inch)  A1 A2 A3
—  9C-1638
9C-4597 
Ø 179.936 ± 0.035 mm (7.0841 ± 0.0014 inch)  Ø 193.612 ± 0.035 mm (7.6225 ± 0.0014 inch)  A1 A2 A3
—  9C-3920  Ø 136.465 ± 0.035 mm (5.3726 ± 0.0014 inch)  Ø 148.370 ± 0.035 mm (5.8413 ± 0.0014 inch)  A1 A2 A3
9K-1174  9K-1173  Ø 182.4990 ± 0.0356 mm (7.1850 ± 0.0014 inch)  Ø 193.6115 ± 0.0355 mm (7.6225 ± 0.0014 inch)  A1 A2 A3
9K-4103  9K-4104  Ø 259.9131 ± 0.0381 mm (10.2328 ± 0.0015 inch)  Ø 239.9182 ± 0.038 mm (9.4456 ± 0.0015 inch)  A1 A2 A3
9K-4254  8K-6930  Ø 259.9131 ± 0.0381 mm (10.2328 ± 0.0015 inch)  Ø 239.9182 ± 0.038 mm (9.4456 ± 0.0015 inch)  A1 A2 A3
—  9K-4822  Ø 259.9131 ± 0.0381 mm (10.2328 ± 0.0015 inch)  Ø 239.9182 ± 0.038 mm (9.4456 ± 0.0015 inch)  A1 A2 A3
—  9K-4829  Ø 259.9131 ± 0.0381 mm (10.2328 ± 0.0015 inch)  Ø 239.9182 ± 0.038 mm (9.4456 ± 0.0015 inch)  A1 A2 A3
9M-3950  9M-3949  Ø 257.1242 ± 0.0381 mm (10.1230 ± 0.0015 inch)  Ø 247.5992 ± 0.0381 mm (9.7480 ± 0.0015 inch)  A1 A2 A3
9M-8588  9M-8589  Ø 314.27 ± 0.038 mm (12.37 ± 0.0015 inch)  Ø 282.525 + 0.04 - 0.08 mm (11.12301 + 0.0016 - 0.0032 inch)  A1 A2 A3
—  9U-3388  Ø 415.851 + 0.045 - 0.090 mm (16.3721+ 0.0018 - 0.0035 inch)  Ø 444.43 ± 0.045 mm (17.50 ± 0.0018 inch)  A1 A2 A3
—  9U-4725  Ø 259.892 + 0.040 - 0.080 mm (10.2320 + 0.0016 - 0.0032 inch)  Ø 239.907 + 0.035 - 0.070 mm (9.4451 + 0.0014 - 0.0028 inch)  A1 A2 A3
—  9V-1290
102-2059 
Ø 259.892 + 0.040 - 0.080 mm (10.2320 + 0.0016 - 0.0032 inch)  Ø 282.507 + 0.040 - 0.080 mm (11.1223 + 0.0016 - 0.0032 inch)  A1 A2 A3
—  9V-9008  Ø 190.437 ± 0.035 mm (7.4975 ± 0.0014 inch)  Ø 193.6115 ± 0.0355 mm (7.6225 ± 0.0014 inch)  A1 A2 A3
—  101-8389  Ø 190.436 ± 0.035 mm (7.4975 ± 0.0014 inch)  Ø 193.6115 ± 0.0355 mm (7.6225 ± 0.0014 inch)  A1 A2 A3
—  107-0692  Ø 415.851 + 0.045 - 0.090 mm (16.3721+ 0.0018 - 0.0035 inch)  Ø 514.276 + 0.045 - 0.090 mm (20.24705 + 0.0018 - 0.0035 inch)  A1 A2 A3
—  115-9755  Ø 259.892 + 0.04 - 0.08 mm (10.23195 + 0.0016 - 0.0032 inch)  Ø 282.525 + 0.04 - 0.08 mm (11.12301 + 0.0016 - 0.0032 inch)  A1 A2 A3
—  129-3045
319-5239 
Ø 247.600 + 0.04 - 0.08 mm (9.74801 + 0.0016 - 0.0032 inch)  Ø 282.525 + 0.04 - 0.08 mm (11.12301 + 0.0016 - 0.0032 inch)  A1 A2 A3
—  137-8845
250-9983 
Ø 317.45 + 0.04 - 0.08 mm (12.498 + 0.002 - 0.003 inch)  Ø 336.5 + 0.04 - 0.08 mm (13.25 + 0.002 - 0.003 inch)  A1 A2 A3
—  151-3038  Ø 317.45 + 0.04 - 0.08 mm (12.498 + 0.002 - 0.003 inch)  Ø 336.5 + 0.04 - 0.08 mm (13.25 + 0.002 - 0.003 inch)  A1 A2 A3
—  154-1383  Ø 190.436 ± 0.035 mm (7.4975 ± 0.0014 inch)  Ø 193.6115 ± 0.0355 mm (7.6225 ± 0.0014 inch)  A1 A2 A3
—  155-4858  Ø 190.437 ± 0.035 mm (7.4975 ± 0.0014 inch)  Ø 203.135 ± 0.035 mm (7.9974 ± 0.0014 inch)  A1 A2 A3
179-2239  8R-6578  Ø 634.795 ± 0.045 mm (24.9919 ± 0.0018 inch)  Ø 679.372 ± 0.045 mm (26.7469 ± 0.0018 inch)  A1 A2 A3
—  180-0016  Ø 260.28 ± 0.04 mm (10.247 ± 0.002 inch)  Ø 282.525 + 0.04 - 0.08 mm (11.123 + 0.002 - 0.003 inch)  A1 A2 A3
—  186-8808  Ø 259.89 ± 0.04 mm (10.232 ± 0.002 inch)  Ø 292.05 + 0.00 - 0.04 mm (11.498 + 0.00 - 0.002 inch)  A1 A2 A3
—  205-0930  Ø 247.600 + 0.04 - 0.08 mm (9.748 + 0.002 - 0.003 inch)  Ø 282.525 + 0.04 - 0.08 mm (11.123 + 0.002 - 0.003 inch)  A1 A2 A3
—  244-1097  Ø 501.576 + 0.045 - 0.090 mm (19.7471 + 0.0018 - 0.0035 inch)  Ø 603.176 + 0.045 - 0.090 mm (23.7470 + 0.0018 - 0.0035 inch)  A1 A2 A3
—  319-5240  Ø 247.60 + 0.04 - 0.08 mm (9.748 + 0.002 - 0.003 inch)  Ø 282.525 + 0.04 - 0.08 mm (11.1230 + 0.002 - 0.003 inch)  A1 A2 A3
—  367-0818  Ø 247.600 + 0.04 - 0.08 mm (9.7480 + 0.002 - 0.003 inch)  Ø 282.525 + 0.04 - 0.08 mm (11.1230 + 0.002 - 0.003 inch)  A1 A2 A3
419-6352  419-6351  Ø 634.795 ± 0.045 mm (24.9919 ± 0.0018 inch)  Ø 679.372 ± 0.045 mm (26.7469 ± 0.0018 inch)  A1 A2 A3
(1) Note: The most current part number is identified in bold font when multiple part numbers are in a cell.

Crack Detection Methods


NOTICE

Regardless of which crack detection method is used, it is important that the instructions furnished with the detection equipment are followed closely when checking any component. Failure to do so may cause inaccurate results or may cause injury to the operator and/or surroundings.


There are five major crack detection methods or Non-Destructive Testing (NDT) listed in this section: Visual Surface Inspection (VT), Liquid Penetrant Testing (PT), Dry / Wet Magnetic Particle Testing (MPT), and Ultrasonic Testing (UT).

Crack detection methods or NDT is methods for testing components for cracks without damaging the component. VT, PT, Dry/ Wet MPT, and UT are methods recommended. There may be more than one acceptable crack detection method for the testing of a given part, although PT is the most versatile. For example, the PT method can be used when testing smooth machined components such as shafts, gear teeth, and splines, but using the Wet MPT is more accurate. Refer to Table 27 for advantages and disadvantages and Table 28 for standards and requirements for these NDT methods.

Table 27
Crack Detection Methods Advantages vs. Disadvantages 
Detection Method  Advantages  Disadvantages 
Visual Surface Inspection (VT)  - Least Expensive
- Detects most damaging defects.
- Immediate Results
- Minimum part preparation 
- Limited to surface-only defects.
- Requires inspectors to have broad knowledge of welding and fabrication in addition to Non-Destructive Testing (NDT). 
Liquid Penetrant Testing (PT)  - Inexpensive
- Minimal Training
- Portable
- Works on nonmagnetic material. 
- Least Sensitive
- Detects surface cracks only.
- Rough or porous surfaces interfere with test 
Dry Magnetic Particle (MPT)  - Portable
- Fast/Immediate Results
- Detects surface and subsurface discontinuities 
- Works on magnetic material only.
- Less sensitive than Wet Magnetic Particle Testing (MPT). 
Wet Magnetic Particle (MPT)  - More sensitive than Liquid Penetrant Testing (PT).
- Detects subsurface as much as 0.13 mm (0.005 inch)
- Requires power for light.
- Works on magnetic material only.
- Liquid composition and agitation must be monitored. 
Ultrasonic Testing (UT)  - Most Sensitive
- Detects deep material defects.
- Immediate Results
- Wide range of materials and thickness can be inspected 
- Most Expensive
- Requires operator training and certification.
- Surface must be accessible to probe 

Table 28
Applicable Crack Detection Standards 
Detection Method  Standard  Acceptance
Criteria 
Minimum
Required
Personnel
Qualifications 
Visual Surface Inspection (VT)  EN-ISO 5817
AWS D1.1 
EN-ISO 5817 - Level B
AWS D1.1 - Table 6.1 
EN-ISO 9712
ANSI-ASNT SNT-TC-1A 
Liquid Penetrant Testing (PT)  EN-ISO 3452
ASTM E165 
EN-ISO 23277
AWS - D1.1 
EN-ISO 9712
ANSI-ASNT SNT-TC-1A 
Magnetic Particle Testing (MPT)  EN-ISO 17638
ASTM E709 
EN-ISO 23278 - Level 1
AWS D1.1 - Table 6.1 
EN-ISO 9712
ANSI-ASNT SNT-TC-1A 
Ultrasonic Testing (UT)  EN-ISO 17640 - Level B
AWS D1.1 
EN-ISO 11666 Technique 2 - Level 2
AWS D1.1 - Class A - Table 6.3 
EN-ISO 9712
ANSI-ASNT SNT-TC-1A 

Visual Surface Inspection (VT)



Illustration 68g06124166
Example of Visual Surface Inspection (VT) Tooling
(A) Flashlight (or adequate light source)
(B) Magnifying Glass
(C) Tape Measure (or other measuring device)
(D) Inspection Mirror

Refer to Tooling and Equipment Table 3 for part numbers.

Components and welds that are to be tested using PT, MPT, or UT shall first be subject to a Visual Surface Inspection (VT). VT is often the most cost-effective inspection method and requires little equipment as seen in Illustration 75. Personnel performing VT shall either be trained to a company standard or have sufficient experience and knowledge regarding the components being inspected. Personnel performing VT shall take routine eye exams.

Liquid Penetrant Testing (PT)

------ WARNING! ------

Personal injury can result from improper handling of chemicals.

Make sure you use all the necessary protective equipment required to do the job.

Make sure that you read and understand all directions and hazards described on the labels and material safety data sheet of any chemical that is used.

Observe all safety precautions recommended by the chemical manufacturer for handling, storage, and disposal of chemicals.


Materials and Equipment Required

Refer to Tooling and Equipment Table 3 for part numbers.

  • Cleaner: Removes dirt before dye application and dissolves the penetrant making possible to wipe the surface clean.

  • Penetration Oil: This solution is highly visible, and will seep into openings at the surface of a part with capillary action.

  • Developer: Provides a blotting action, bringing the penetrant out of the discontinuities and providing a contrasting background to increase the visibility of the penetrating oil indications.

  • Wire Brush: Removes dirt and paint.

  • Cloth or Wipes: Use with cleaner and for other miscellaneous uses.

Procedure



    Illustration 69g06084048
    Typical example of pre-cleaning the testing area.

  1. Preclean the area to be tested. Spray on cleaner/ remover to loosen any scale, dirt, or any oil. Wipe the area to be tested with a solvent dampened cloth to remove remaining dirt and allow the area to dry. Remove paint where there are visible cracks using paint remover or a wire brush.


    Illustration 70g06084053
    Typical example of applying penetrating oil to areas to be tested.

  2. Apply penetrating oil by spraying to the entire area to be tested. Allow 10 to 15 minutes for penetrating oil to soak. After the penetrating oil has been allowed to soak, remove the excess penetrating oil with clean, dry wipe.


    Illustration 71g06084060
    Typical example of removing penetrating oil with a cloth.

  3. The last traces of penetrating oil should be removed with the cleaner solvent dampened cloth or wipe. Allow the area to dry thoroughly.


    Illustration 72g06084070
    Typical example of applying the developer.

  4. Before using developer, ensure that the developer is mixed thoroughly by shaking the container. Hold the container approximately 203 - 305 mm (8 - 12 inch) away from part. Apply an even, thin layer of developer over the area being tested. A few thin layers are a better application method than one thick layer.


    Illustration 73g03773759
    Typical example of cracks found during Liquid Penetrant Testing (PT).

  5. Allow the developer to dry completely for 10 to 15 minutes before inspecting for cracks. Defects will show as red lines in white developer background, refer to Illustration 73. Clean the area of application of the developer with solvent cleaner.

Dry Magnetic Particle Testing (MPT)

Materials and Equipment Required

Refer to Tooling and Equipment Table 3 for part numbers.



Illustration 74g06085930
(A) Indications shown by Dry Magnetic Particle Testing (MPT).
(B) Electromagnetic Yoke
(C) Dry Powder Bulb

  1. Dry magnetic powder shall be of high permeability and low retentively and of suitable sizes and shapes to produce magnetic particle indications. The powder shall be of a color that will provide adequate contrast with the background of the surface being inspected.

  2. Dry magnetic particles shall be stored in suitable containers to resist contamination such as moisture, grease, oil, non-magnetic particles such as sand, and excessive heat. Contaminants will manifest in the form of particle color change and particle agglomeration. The degree of contamination will determine further use of the powder.

  3. Dry magnetic powder shall be tested in accordance with ASTM E709 Section 18 (Evaluation of System Performance/Sensitivity) when not performing.

  4. Equipment should include a "U" shaped electromagnetic yoke made from highly permeable magnetic material, which has a coil wound around the yoke. This coil carries a magnetizing current to impose a localized longitudinal magnetic field into the part. The magnetizing force of the yoke is related to the electromagnetic strength and can be tested by determining the lifting power of a steel plate. The yoke shall have a lifting force of at least 4.5 kg (10 lbs).

  5. Check dry powder blower routinely to ensure that the spray is a light, uniform, dust-like coating of the dry magnetic particles. Blower should also have sufficient force to remove excess particles without disturbing those particles that are evidence of indications.

  6. All equipment shall be inspected at a minimum of once a year or when accuracy is questionable.

Procedure

  1. Ensure surface to be inspected is dry and free from oil, grease, sand, loose rust, mil scale, paint, and other contaminants.

  2. Apply the magnetic field using the yoke against the faces and inside diameter of each bore.

  3. Simultaneously apply the dry powder using the dry powder blower.

  4. Remove excess powder by lightly blowing away the dry particles.

  5. Continue around the entire circumference of each bore. Position the yoke twice in each area at 1.57 rad (90°) to ensure that multiple directions of the magnetic field are created.

  6. Observe particles and note if any clusters of particles appear revealing an indication.

  7. Record the size and shape of any discontinuities or indications found.

Wet Magnetic Particle Testing (MPT)

Materials and Equipment

Refer to Tooling and Equipment Table 3 for part numbers.



Illustration 75g06085937
(A) Indications shown by Wet Magnetic Particle Testing (MPT).
(B) Electromagnetic Yoke
(D) Ultraviolet Lamp


Illustration 76g06003178
Pear Shaped Centrifuge Tube

  1. Wet magnetic particles are fluorescent and are suspended in a vehicle in a given concentration that will allow application to the test surface by spraying.

  2. Concentration:

    1. The concentration of the suspended magnetic particles shall be as specified by the manufacturer and be checked by settling volume measurements.

    2. Concentrations are determined by measuring the settling volume by using an ASTM pear shaped centrifuge tube with a 1 mL (0.034 oz) stem with 0.05 mL (0.0017 oz) divisions, refer to Illustration 76. Before sampling, the suspension shall be thoroughly mixed to assure suspension of all particles, which could have settled. A 100 mL (3.40 oz) sample of the suspension shall be taken and allowed to settle for 30 minutes. The settling volume should be between 0.1 mL (0.0034 oz) and 0.25 mL (0.0085 oz) in a 100 mL (3.40 oz) sample.

    3. Wet magnetic particles may be suspended in a low viscosity oil or conditioned water.

    4. The oil shall have the following characteristics:

      • Low viscosity not to exceed 5 mm2/s (5 cSt) at any temperature at which the vehicle is to be used.

      • Low inherent fluorescence and be non-reactive.

    5. The conditioning agents used in the conditioned water shall have the following characteristics:

      • Impart good wetting characteristics and good dispersion.

      • Minimize foaming and be non-corrosive.

      • Low viscosity shall not exceed a maximum viscosity of 5 mm2/s (5 cSt) at 38° C (100° F).

      • Non-fluorescent, non-reactive, and odorless.

      • Alkalinity shall not exceed a pH of 10.5.

  3. Equipment should include a "U" shaped electromagnetic yoke made from highly permeable magnetic material, which has a coil wound around the yoke. This coil carries a magnetizing current to impose a localized longitudinal magnetic field into the part. The magnetizing force of the yoke is related to the electromagnetic strength and can be tested by determining the lifting power of a steel plate. The yoke shall have a lifting force of at least 4.5 kg (10 lbs).

Procedure

  1. Ensure surface to be inspected is dry and free from oil, grease, sand, loose rust, mil scale, paint, and any other contaminants.

  2. Apply the magnetic field using the yoke against the surface in the area to be inspected.


    Illustration 77g03536210

  3. For case hardened and ground surfaces:

    • Due to the sensitivity required to locate the grinding cracks, inspection of case hardened and ground surfaces require that the yoke is applied so that the magnetic field is 1.57 rad (90°) to the expected direction of the indications. Also, due to the increased sensitivity resulting when the yoke is energized, the yoke is not moved until the evaluation is completed in the first direction. An AC yoke shall be used. See Illustration 77 for an example of yoke placement.

  4. Visually inspect for indications of discontinuities using the proper illumination.

  5. Record the size and shape of any discontinuities found.

Ultrasonic Testing (UT)

Note: Crack depth cannot be accurately determined by UT, only full depth cracking can be consistently determined. For cracks that are not full depth, an indication of a partial depth cracks can be detected by an experienced technician. Refer to Table 28 for crack detection standards.

Refer to Tooling and Equipment Table 3 for part numbers.

  1. Ultrasonic Testing (UT) is a method of Non-Destructive Testing (NDT) using short ultrasonic pulse waves (with frequencies from 0.1-15 MHz up to 50 MHz) to detect the thickness of the object. Ultrasonic testing consists of an ultrasound transducer connected to a diagnostic machine and passed over the object being inspected.

  2. There are two methods of receiving the ultrasound waveform from the transducer: reflection and attenuation.

    1. Reflection - Ultrasonic pulses exit the transducer and travel throughout the thickness of the material. When the sound waves propagate into an object being tested, the waves return to the transducer when a discontinuity is discovered along the sonic path. These waves continue and reflect from the back surface of the material to project the thickness of the material.

    2. Attenuation - A transmitter sends ultrasound through one surface, and a separate receiver detects the amount that has reached it on another surface after traveling through the medium. Any discontinuities or other conditions within the medium will reduce the amount of sound transmitted, revealing the presence of the imperfections.
Back to top
The names Caterpillar, John Deere, JD, JCB, Hyundai or any other original equipment manufacturers are registered trademarks of the respective original equipment manufacturers. All names, descriptions, numbers and symbols are used for reference purposes only.
CH-Part.com is in no way associated with any of the manufacturers we have listed. All manufacturer's names and descriptions are for reference only.