D9T Track-Type Tractor Systems Caterpillar


Piston Pump (Steering)

Usage:

D9T REX

Steering Pump Operation



Illustration 1g03400874
D9T Steering pump (right turn)
(1) Drive shaft
(2) Swashplate
(3) Actuator piston
(4) Feedback lever
(5A) Pump control solenoid
(5B) Pump control solenoid
(6) Notch
(7) Lever arm
(8) Pump control spool
(9) Charge pump
(10) Pump control valve
(12) Passage from steering motor
(13) Passage to steering motor
(14) Barrel assembly
(15) Piston
(BB) Cutaway section
(CC) Component surface
(FF) Activated components
(GG) Tank pressure
(KK) High pressure
(LL) First pressure reduction
(RR) Charge pressure
(SS) Reduced charge pressure


Illustration 2g03400880
D9T Steering pump (right turn end views)
(1) Drive shaft
(9) Charge pump
(11) Pressure override valve (POR)
(16) Crossover relief and makeup valve
(17) Passage from steering motor
(18) Charge pressure relief valve
(19) Passage to steering motor
(20) Steering charge filter
(22) Passage from suction manifold
(23) Resolver
(52) Passage from steering charge filter
(53) Steering charge cold oil relief
(BB) Cutaway section
(CC) Component surface
(FF) Activated components
(GG) Tank pressure
(KK) High pressure
(LL) First pressure reduction
(RR) Charge pressure
(SS) Reduced charge pressure

Steering Pump Components

The hydraulic steering pump is a bidirectional variable displacement axial piston pump. The displacement of the pump and the direction of oil flow is controlled by the pump control valve.

The steering hydraulic pump has the following components:

Pump Control Valve (10) - The pump control valve regulates the flow of charge oil to the ends of actuator piston (3). Actuator piston (3) is mechanically connected to the swashplate. The actuator piston adjusts the angle of swashplate (2). The pump control valve responds proportionally to the movement of the steering control lever in the cab. The pump control valve contains two solenoids (5A) and (5B), pump control spool (8), lever arm (7), and feedback lever (4).

Feedback Lever (4) - The feedback lever joins pump control valve (10) and actuator piston (3). Feedback lever (4) provides resistance against the pump control solenoid in order to meter oil to actuator piston (3).

Actuator Piston (3) - The actuator piston adjusts the angle of swashplate (2). Oil from pump control valve (10) moves the actuator piston. Centering springs are used to maintain a neutral position when the steering control lever is not sending a turning signal.

Notch (6) - The notch is the mechanical connection between actuator piston (3) and feedback lever (4). When the actuator piston moves, the feedback lever moves in order to increase the tension in the spring that is connected between the lever arms.

POR Valve (11) - Resolver (23) shifts in order to allow the highest pressure in the drive loop to act against the spring in the POR valve. When this drive loop pressure overcomes the spring in the POR valve, pressure from either side of actuator piston (3) is drained to the hydraulic oil tank. When the pressure of the oil in the drive loop exceeds the pressure setting of the POR valve, the pump will destroke.

Charge Pump (9) - The charge pump is a gear pump that provides charge oil continuously when the engine is running. Charge oil is used in order to replenish the leakage and flushing lost in the closed drive loop system. Reduced pressure oil is also used to move actuator piston (3) in order to adjust the swashplate angle of the steering pump.

Barrel Assembly (14) - The barrel contains nine pistons. Barrel assembly (14) rotates whenever the engine is running. Pistons (15) move oil into the barrel and out of the barrel.

Swashplate (2) - The displacement of the pump is controlled by the angle of the swashplate. When the swashplate is at a maximum angle, the pistons move the maximum volume of oil in and out of the rotating barrel. The swashplate can angle to either side in order to change the direction of the flow of oil.

Drive Shaft (1) - The rotation of the pump is clockwise when the pump is viewed from the end of the drive shaft. The piston and barrel assembly is splined to the drive shaft.

Crossover Relief and Makeup Valves (16) - The crossover relief valves relieve high-pressure spikes in the drive loop. Each valve also contains a makeup valve. The makeup valve allows charge oil to replenish the closed drive loop.

Charge Pressure Relief Valve (18) - The charge pressure relief valve maintains the charge loop pressure.

Resolver (23) - The resolver is a shuttle check valve. The resolver ensures that the highest pressure in the drive loop reaches POR valve (11).

Charge Pressure Relief Valve



Illustration 3g02745356
Charge pressure relief valve
(24) Passage to charge pump inlet
(25) Passage from charge pump
(26) Plunger
(27) Spring

The charge pressure relief valve is located in the steering pump head. The relief valve maintains the pressure of the charge oil. The relief setting is adjustable.

Oil from the charge pump enters the relief valve through passage (25). When the pressure in the charge circuit is lower than the relief valve setting, the force of spring (27) keeps plunger (26) closed. When charge pressure is enough to overcome the force of spring (27), the plunger opens to the left and oil drains to the pump case through passage (24).

POR Valve



Illustration 4g02745916
POR valve
(28) Spring
(29) Passage from actuator piston
(30) Passage to pump case
(31) Passage from drive loop A
(32) Passage from drive loop B
(33) Shuttle
(34) Chamber
(35) Piston
(36) Valve

The POR valve limits the maximum pressure in both sides of the closed drive loop. When the valve opens, the valve drains oil from the actuator piston in the steering pump. As the actuator piston is drained, the centering springs in the actuator piston move the swashplate in order to reduce pump output.

Slug (33) serves as a resolver. Oil from the high-pressure side of the closed loop enters the POR valve through either passage (31) or passage (32). Shuttle (33) is moved left if the high pressure is in passage (32). Shuttle (33) is moved right if the high pressure is in passage (31). The high-pressure oil is sent to chamber (34).

When the pressure in chamber (34) is high enough to overcome spring (28), piston (35) and valve (36) move to the left against spring (28). The valve connects passage (29) to passage (30). The oil from the actuator piston is then allowed to drain to the pump case.

The pressure setting of the POR valve is adjustable.

Crossover Relief and Makeup Valve



Illustration 5g03401718
Crossover relief and makeup valve is placed in each side of the closed drive loop.
(37) Passage from drive loop
(38) Passage to charge circuit
(39) Spring
(40) Spring
(41) Piston
(42) Chamber
(43) Valve

The crossover relief valves are designed to remove high-pressure spikes in the drive loops. Some charge oil is lost in the closed drive loop from leakage and flushing.

The makeup valves allow charge oil to replenish the low-pressure side of the drive loop. The valves are not capable of handling large flows.

Oil from the drive loop enters the valve through passage (37). The oil flows into chamber (42). Piston (41) is held closed by spring (40).

When the force of the pressure of the oil in chamber (42) against piston (41) becomes greater than the force of spring (40), piston (41) opens to the right. The oil in chamber (42) flows around piston (41) to the drain.

When the pressure drops in chamber (42), only the force of spring (39) is acting against valve (43). The high pressure on the left side of valve (43) is greater than the force of spring (39). Valve (43) opens to the right. Oil from the drive loop can now go through passage (38) into the charge circuit.

The valve also acts as a makeup valve for the closed drive loop. When the pressure of the low-pressure side of the closed loop drops below charge pressure, charge oil in passage (38) opens valve (43). Oil from the charge circuit flows into the low-pressure side of the drive loop through passage (37). When the pressure in passage (37) and chamber (42) reaches charge pressure, the force of spring (39) closes valve (43).

Pump Control Valve



Illustration 6g03401031
Pump control valve (right turn)
(4) Feedback lever
(5A) Pump control solenoid
(5B) Pump control solenoid
(7A) Lever arm
(7B) Lever arm
(8) Pump control spool
(44) Feedback pin
(45) Spring
(46) Passage to actuator piston
(47) Pivot pin
(48) Control pin
(49) Passage to actuator piston

When the operator moves the steering control lever to RIGHT TURN, pump control solenoid (5A) is energized by a proportional signal from the power train ECM.

When the spool (8) shifts, charge oil is sent to the actuator piston through passage (49), control pin (48) forces lever arm (7B) to the right. Spring (45) is placed under a small amount of tension in order to meter oil to the actuator piston.

Charge oil in passage (49) causes the actuator piston to shift to the right. Feedback lever (4) shifts with the actuator piston. Feedback lever (4) and lever arms (7A) and (7B) pivot around pivot pin (47). Feedback pin (44) is in the end of feedback lever (4). As the feedback lever moves with the actuator piston, feedback pin (44) pushes lever arm (7A).

When lever arm (7A) moves, spring (45) is extended. The extended spring pulls lever arm (7B), which causes the lever arm to exert a force on control pin (48). The force on control pin (48) works against the force of pump control solenoid (5A).

Therefore, feedback lever (4) provides resistance to the force of pump control solenoids (5A) and (5B) that shift pump control spool (8). When the actuator piston moves further, the resistance from feedback lever (4) increases. This feedback helps to hold the pump swashplate at the required angle.

When the operator returns the steering control lever to the NEUTRAL position, feedback lever (4), lever arms (7A) and (7B), and spring (45) return pump control spool (8) to the center position.

Actuator Piston



Illustration 7g02746636
Actuator piston
(3) Actuator piston
(6) Notch
(50) Springs
(51) Notch

Oil from the pump control valve flows to either the right end or the left end of actuator piston (3). The oil pressure moves the actuator piston in order to upstroke the pump.

A plate that is pinned to an arm on the swashplate is in notch (6). When the actuator piston moves, the plate moves the arm on the swashplate. The swashplate moves to the angle that corresponds to the position of the actuator piston.

The feedback lever to the pump control valve is in notch (51). The feedback lever works with the pump control valve in order to maintain precise control of the pump displacement.

When the oil is drained from the actuator piston, springs (50) return the piston to the centered position.

Caterpillar Information System:

986H Wheel Loader Machine Systems Torque Converter (Lockup)
990K Wheel Loader Engine Oil Level - Check
PL83 and PL87 Pipelayer Systems Piston Motor (Steering)
990K Wheel Loader Engine Oil Sample - Obtain
836K Landfill Compactor and 834K Wheel Dozer Sensor Signal (PWM) - Test
D9T Track-Type Tractor Systems Steering Charge Filter
Installation of 10U (S/N: EPA) and 10SU (S/N: EPB) with Single and Dual Tilt Cylinders on D10T2 Track-Type Tractors {6051, 6053} Installation of 10U (S/N: EPA) and 10SU (S/N: EPB) with Single and Dual Tilt Cylinders on D10T2 Track-Type Tractors {6051, 6053}
2013/10/25 Turbochargers on Certain 3054C, 3054E, C4.4, and C4.4 (Mechanical) Machine Engines {1052, 1053}
2013/11/14 New Brake Cooling Hoses Now Available for AD55B Underground Articulated Trucks {1374, 4257}
Updating to Latest VIMS3G Flash Files And Configuration Files Available For Cat® Machines Equipped With VIMS3G{7601, 7620} Updating to Latest VIMS3G Flash Files And Configuration Files Available For Cat® Machines Equipped With VIMS3G{7601, 7620}
D10T2 Track-Type Tractor Systems Location of Components (HVAC System)
990K Wheel Loader Engine Oil and Filter - Change
C9.3 Industrial Engine Battery Disconnect Switch - If Equipped
990K Wheel Loader Ether Starting Aid Cylinder - Replace
D9T Track-Type Tractor Systems Modes of Operation (Steering System)
374F Excavator Hydraulic System Solenoid Valve (Hydraulic Lockout)
990K Wheel Loader Cooling System Coolant (ELC) - Change
2013/03/13 New Flag Spacer with Rust Preventive and Corrosion Protection Used on Upper Hitch Pin for 950 Through 980 Series H and Series K Medium Wheel Loaders {7057, 7100}
C3.3B Tier 4 Final Engines for Caterpillar Built Machines Coolant Temperature Sensor
924K, 930K and 938K Wheel Loaders Operator Controls
D8T, D9T and D10T2 Track-Type Tractors VIMSTM 3G / Product LinkTM Electronic Service Tool Does Not Communicate
Bronze 430-9992 Engine Rebuild Kit for 3306 Machine Engines{1000} Bronze 430-9992 Engine Rebuild Kit for 3306 Machine Engines{1000}
990K Wheel Loader Cooling System Coolant Extender (ELC) - Add
C9.3 Industrial Engine Manual Stop Procedure
Back to top
The names Caterpillar, John Deere, JD, JCB, Hyundai or any other original equipment manufacturers are registered trademarks of the respective original equipment manufacturers. All names, descriptions, numbers and symbols are used for reference purposes only.
CH-Part.com is in no way associated with any of the manufacturers we have listed. All manufacturer's names and descriptions are for reference only.